Nuprl Lemma : equal-implies-member-param-W

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P]. ∀[p:P]. ∀[w:pW p].
[w':pco-W p].
  w' ∈ pW supposing w' ∈ (pco-W p)


Proof




Definitions occuring in Statement :  param-W: pW param-co-W: pco-W uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] so_apply: x[s1;s2] subtype_rel: A ⊆B param-W: pW all: x:A. B[x] implies:  Q squash: T prop: so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] pcw-path: Path nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A exists: x:A. B[x] uimplies: supposing a true: True
Lemmas referenced :  param-co-W_wf pcw-step-agree_wf false_wf le_wf pcw-path_wf all_wf squash_wf exists_wf nat_wf pcw-pp-barred_wf pcw-partial_wf equal_wf param-W_wf le_reflexive true_wf pcw-step_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality functionEquality cumulativity applyEquality functionExtensionality because_Cache lambdaEquality universeEquality sqequalRule setElimination rename dependent_set_memberEquality lambdaFormation dependent_functionElimination independent_functionElimination imageElimination imageMemberEquality baseClosed natural_numberEquality independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality addLevel hyp_replacement levelHypothesis instantiate

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].  \mforall{}[p:P].
\mforall{}[w:pW  p].  \mforall{}[w':pco-W  p].
    w'  \mmember{}  pW  p  supposing  w  =  w'



Date html generated: 2016_10_21-AM-09_45_34
Last ObjectModification: 2016_07_12-AM-05_05_53

Theory : co-recursion


Home Index