Nuprl Lemma : equal-implies-member-param-W
∀[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P]. ∀[p:P]. ∀[w:pW p].
∀[w':pco-W p].
  w' ∈ pW p supposing w = w' ∈ (pco-W p)
Proof
Definitions occuring in Statement : 
param-W: pW
, 
param-co-W: pco-W
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
param-W: pW
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
pcw-path: Path
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
true: True
Lemmas referenced : 
param-co-W_wf, 
pcw-step-agree_wf, 
false_wf, 
le_wf, 
pcw-path_wf, 
all_wf, 
squash_wf, 
exists_wf, 
nat_wf, 
pcw-pp-barred_wf, 
pcw-partial_wf, 
equal_wf, 
param-W_wf, 
le_reflexive, 
true_wf, 
pcw-step_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
functionEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
because_Cache, 
lambdaEquality, 
universeEquality, 
sqequalRule, 
setElimination, 
rename, 
dependent_set_memberEquality, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
independent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
addLevel, 
hyp_replacement, 
levelHypothesis, 
instantiate
Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].  \mforall{}[p:P].
\mforall{}[w:pW  p].  \mforall{}[w':pco-W  p].
    w'  \mmember{}  pW  p  supposing  w  =  w'
Date html generated:
2016_10_21-AM-09_45_34
Last ObjectModification:
2016_07_12-AM-05_05_53
Theory : co-recursion
Home
Index