Nuprl Lemma : pcw-partial_wf
∀[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P]. ∀[path:Path]. ∀[n:ℕ].
  (pcw-partial(path;n) ∈ PartialPath)
Proof
Definitions occuring in Statement : 
pcw-partial: pcw-partial(path;n), 
pcw-pp: PartialPath, 
pcw-path: Path, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s1;s2;s3], 
so_apply: x[s1;s2], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
pcw-partial: pcw-partial(path;n), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
pcw-path: Path, 
pcw-pp: PartialPath, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
uiff: uiff(P;Q), 
subtract: n - m, 
top: Top, 
less_than': less_than'(a;b), 
true: True
Lemmas referenced : 
nat_wf, 
pcw-path_wf, 
subtype_rel_dep_function, 
pcw-step_wf, 
int_seg_wf, 
int_seg_subtype_nat, 
subtype_rel_self, 
all_wf, 
subtract_wf, 
pcw-steprel_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
le-add-cancel2, 
lelt_wf, 
add-member-int_seg2, 
decidable__le, 
not-le-2, 
zero-add, 
add-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
lambdaEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
dependent_pairEquality, 
natural_numberEquality, 
independent_isectElimination, 
lambdaFormation, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
voidElimination, 
independent_functionElimination, 
addEquality, 
minusEquality, 
voidEquality, 
intEquality
Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
\mforall{}[path:Path].  \mforall{}[n:\mBbbN{}].
    (pcw-partial(path;n)  \mmember{}  PartialPath)
Date html generated:
2016_05_14-AM-06_12_59
Last ObjectModification:
2015_12_26-PM-00_06_00
Theory : co-recursion
Home
Index