Nuprl Lemma : fix-mutual-corec-partial1

[A:Type]
  (∀[k:ℕ]. ∀[F:(ℕk ⟶ Type) ⟶ ℕk ⟶ Type]. ∀[f:(i:ℕk ⟶ m-corec(T.F[T];i) ⟶ partial(A))
                                                ⟶ i:ℕk
                                                ⟶ m-corec(T.F[T];i)
                                                ⟶ partial(A)].
     (fix(f) ∈ i:ℕk ⟶ m-corec(T.F[T];i) ⟶ partial(A))) supposing 
     (mono(A) and 
     value-type(A))


Proof




Definitions occuring in Statement :  m-corec: m-corec(T.F[T];i) partial: partial(T) mono: mono(T) int_seg: {i..j-} nat: value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T fix: fix(F) function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] nat: subtype_rel: A ⊆B prop: top: Top
Lemmas referenced :  void_wf m-corec_wf int_seg_wf partial_wf nat_wf mono_wf value-type_wf fixpoint-induction-bottom2 strictness-apply bottom_wf-partial
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality voidElimination thin instantiate extract_by_obid hypothesis because_Cache sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality functionEquality cumulativity natural_numberEquality setElimination rename universeEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality independent_isectElimination voidEquality

Latex:
\mforall{}[A:Type]
    (\mforall{}[k:\mBbbN{}].  \mforall{}[F:(\mBbbN{}k  {}\mrightarrow{}  Type)  {}\mrightarrow{}  \mBbbN{}k  {}\mrightarrow{}  Type].  \mforall{}[f:(i:\mBbbN{}k  {}\mrightarrow{}  m-corec(T.F[T];i)  {}\mrightarrow{}  partial(A))
                                                                                                {}\mrightarrow{}  i:\mBbbN{}k
                                                                                                {}\mrightarrow{}  m-corec(T.F[T];i)
                                                                                                {}\mrightarrow{}  partial(A)].
          (fix(f)  \mmember{}  i:\mBbbN{}k  {}\mrightarrow{}  m-corec(T.F[T];i)  {}\mrightarrow{}  partial(A)))  supposing 
          (mono(A)  and 
          value-type(A))



Date html generated: 2018_05_21-PM-00_17_50
Last ObjectModification: 2017_10_18-PM-02_46_28

Theory : co-recursion


Home Index