Nuprl Lemma : fix-mutual-corec-partial1
∀[A:Type]
  (∀[k:ℕ]. ∀[F:(ℕk ⟶ Type) ⟶ ℕk ⟶ Type]. ∀[f:(i:ℕk ⟶ m-corec(T.F[T];i) ⟶ partial(A))
                                                ⟶ i:ℕk
                                                ⟶ m-corec(T.F[T];i)
                                                ⟶ partial(A)].
     (fix(f) ∈ i:ℕk ⟶ m-corec(T.F[T];i) ⟶ partial(A))) supposing 
     (mono(A) and 
     value-type(A))
Proof
Definitions occuring in Statement : 
m-corec: m-corec(T.F[T];i)
, 
partial: partial(T)
, 
mono: mono(T)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
fix: fix(F)
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
top: Top
Lemmas referenced : 
void_wf, 
m-corec_wf, 
int_seg_wf, 
partial_wf, 
nat_wf, 
mono_wf, 
value-type_wf, 
fixpoint-induction-bottom2, 
strictness-apply, 
bottom_wf-partial
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
voidElimination, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
because_Cache, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
natural_numberEquality, 
setElimination, 
rename, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
independent_isectElimination, 
voidEquality
Latex:
\mforall{}[A:Type]
    (\mforall{}[k:\mBbbN{}].  \mforall{}[F:(\mBbbN{}k  {}\mrightarrow{}  Type)  {}\mrightarrow{}  \mBbbN{}k  {}\mrightarrow{}  Type].  \mforall{}[f:(i:\mBbbN{}k  {}\mrightarrow{}  m-corec(T.F[T];i)  {}\mrightarrow{}  partial(A))
                                                                                                {}\mrightarrow{}  i:\mBbbN{}k
                                                                                                {}\mrightarrow{}  m-corec(T.F[T];i)
                                                                                                {}\mrightarrow{}  partial(A)].
          (fix(f)  \mmember{}  i:\mBbbN{}k  {}\mrightarrow{}  m-corec(T.F[T];i)  {}\mrightarrow{}  partial(A)))  supposing 
          (mono(A)  and 
          value-type(A))
Date html generated:
2018_05_21-PM-00_17_50
Last ObjectModification:
2017_10_18-PM-02_46_28
Theory : co-recursion
Home
Index