Nuprl Lemma : implies-k-continuous

[k:ℕ]. ∀[F:(ℕk ⟶ Type) ⟶ ℕk ⟶ Type].
  (k-Monotone(T.F[T])
   (∀i,j:ℕk. ∀Z:ℕk ⟶ Type.  Continuous(X.F[λi.if (i =z j) then else fi i))
   k-Continuous(T.F[T]))


Proof




Definitions occuring in Statement :  k-continuous: k-Continuous(T.F[T]) k-monotone: k-Monotone(T.F[T]) type-continuous: Continuous(T.F[T]) int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] nat: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q all: x:A. B[x] prop: subtype_rel: A ⊆B int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) uimplies: supposing a exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False k-continuous: k-Continuous(T.F[T]) k-subtype: A ⊆ B decidable: Dec(P) not: ¬A sq_stable: SqStable(P) squash: T subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True k-monotone: k-Monotone(T.F[T])
Lemmas referenced :  k-continuous-iff-all-k-1 int_seg_wf all_wf type-continuous_wf eq_int_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int k-monotone_wf nat_wf k-subtype_wf decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf implies-k-1-continuous
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality functionEquality cumulativity natural_numberEquality setElimination rename because_Cache hypothesis universeEquality productElimination independent_functionElimination instantiate unionElimination equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination voidElimination isect_memberEquality axiomEquality dependent_set_memberEquality addEquality independent_pairFormation imageMemberEquality baseClosed imageElimination voidEquality intEquality minusEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[F:(\mBbbN{}k  {}\mrightarrow{}  Type)  {}\mrightarrow{}  \mBbbN{}k  {}\mrightarrow{}  Type].
    (k-Monotone(T.F[T])
    {}\mRightarrow{}  (\mforall{}i,j:\mBbbN{}k.  \mforall{}Z:\mBbbN{}k  {}\mrightarrow{}  Type.    Continuous(X.F[\mlambda{}i.if  (i  =\msubz{}  j)  then  X  else  Z  i  fi  ]  i))
    {}\mRightarrow{}  k-Continuous(T.F[T]))



Date html generated: 2018_05_21-PM-00_10_20
Last ObjectModification: 2017_10_18-PM-02_41_08

Theory : co-recursion


Home Index