Nuprl Lemma : implies-k-1-continuous

[k:ℕ]. ∀[F:(ℕk ⟶ Type) ⟶ Type].
  ((∀[A,B:ℕk ⟶ Type].  F[A] ⊆F[B] supposing A ⊆ B)
   (∀j:ℕk. ∀Z:ℕk ⟶ Type.  Continuous(X.F[λi.if (i =z j) then else fi ]))
   k-1-continuous{i:l}(k;T.F[T]))


Proof




Definitions occuring in Statement :  k-1-continuous: k-1-continuous{i:l}(k;T.F[T]) k-subtype: A ⊆ B type-continuous: Continuous(T.F[T]) int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q k-1-continuous: k-1-continuous{i:l}(k;T.F[T]) k-intersection: n. X[n] prop: so_lambda: λ2x.t[x] nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True so_apply: x[s] int_seg: {i..j-} top: Top ge: i ≥  guard: {T} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  lelt: i ≤ j < k bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b type-continuous: Continuous(T.F[T]) nequal: a ≠ b ∈  cand: c∧ B label: ...$L... t k-subtype: A ⊆ B nat_plus: + less_than: a < b
Lemmas referenced :  all_wf nat_wf k-subtype_wf decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf int_seg_wf type-continuous_wf ifthenelse_wf eq_int_wf uall_wf subtype_rel_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf subtract_wf not-ge-2 less-iff-le minus-minus subtype_rel_isect-2 lt_int_wf subtype_rel-equal bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot decidable__lt not-lt-2 le-add-cancel-alt lelt_wf squash_wf true_wf assert_of_eq_int neg_assert_of_eq_int int_subtype_base isect_wf less_than_transitivity2 le_weakening not-equal-2 le_antisymmetry_iff le-add-cancel2 subtype_rel_self subtype_rel_isect_general member_wf imax_unfold le_int_wf set_subtype_base imax_wf iff_weakening_equal add-mul-special two-mul mul-distributes-right zero-mul one-mul minus-zero add_nat_wf subtype_rel_transitivity le_reflexive omega-shadow mul-distributes mul-commutes mul-associates mul-swap int_seg_properties assert_of_le_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality hypothesisEquality applyEquality functionExtensionality because_Cache dependent_set_memberEquality addEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination independent_isectElimination imageMemberEquality baseClosed imageElimination minusEquality axiomEquality functionEquality cumulativity universeEquality instantiate isectEquality isect_memberEquality voidEquality intEquality intWeakElimination equalityElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp hyp_replacement sqequalIntensionalEquality multiplyEquality applyLambdaEquality addLevel levelHypothesis

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[F:(\mBbbN{}k  {}\mrightarrow{}  Type)  {}\mrightarrow{}  Type].
    ((\mforall{}[A,B:\mBbbN{}k  {}\mrightarrow{}  Type].    F[A]  \msubseteq{}r  F[B]  supposing  A  \msubseteq{}  B)
    {}\mRightarrow{}  (\mforall{}j:\mBbbN{}k.  \mforall{}Z:\mBbbN{}k  {}\mrightarrow{}  Type.    Continuous(X.F[\mlambda{}i.if  (i  =\msubz{}  j)  then  X  else  Z  i  fi  ]))
    {}\mRightarrow{}  k-1-continuous\{i:l\}(k;T.F[T]))



Date html generated: 2018_05_21-PM-00_10_12
Last ObjectModification: 2017_10_18-PM-02_38_51

Theory : co-recursion


Home Index