Nuprl Lemma : pcw-pp_wf

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P].  (PartialPath ∈ Type)


Proof




Definitions occuring in Statement :  pcw-pp: PartialPath uall: [x:A]. B[x] so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pcw-pp: PartialPath nat: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  nat_wf int_seg_wf pcw-step_wf all_wf subtract_wf pcw-steprel_wf decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le le-add-cancel2 lelt_wf add-member-int_seg2 decidable__le not-le-2 zero-add add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality productEquality lemma_by_obid hypothesis functionEquality sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality cumulativity lambdaEquality applyEquality because_Cache productElimination dependent_set_memberEquality independent_pairFormation dependent_functionElimination unionElimination lambdaFormation voidElimination independent_functionElimination independent_isectElimination addEquality minusEquality isect_memberEquality voidEquality intEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
    (PartialPath  \mmember{}  Type)



Date html generated: 2016_05_14-AM-06_12_56
Last ObjectModification: 2015_12_26-PM-00_05_52

Theory : co-recursion


Home Index