Nuprl Lemma : append-empty-nat-seq

[f:finite-nat-seq()]. ∀[g:Top].  (f**g^(0) f ∈ finite-nat-seq())


Proof




Definitions occuring in Statement :  append-finite-nat-seq: f**g mk-finite-nat-seq: f^(n) finite-nat-seq: finite-nat-seq() uall: [x:A]. B[x] top: Top natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T append-finite-nat-seq: f**g mk-finite-nat-seq: f^(n) finite-nat-seq: finite-nat-seq() nat: int_seg: {i..j-} all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  add-zero lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf int_seg_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot int_seg_properties nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf le_wf nat_wf finite-nat-seq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin extract_by_obid isectElimination setElimination rename hypothesisEquality hypothesis dependent_pairEquality functionExtensionality lambdaFormation unionElimination equalityElimination because_Cache independent_isectElimination lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality natural_numberEquality imageMemberEquality baseClosed imageElimination independent_functionElimination applyEquality dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate cumulativity lambdaEquality int_eqEquality intEquality computeAll dependent_set_memberEquality functionEquality axiomEquality

Latex:
\mforall{}[f:finite-nat-seq()].  \mforall{}[g:Top].    (f**g\^{}(0)  =  f)



Date html generated: 2017_04_20-AM-07_29_33
Last ObjectModification: 2017_02_27-PM-06_00_20

Theory : continuity


Home Index