Nuprl Lemma : bounded-type-cantor
Bounded(ℕ ⟶ 𝔹)
Proof
Definitions occuring in Statement : 
bounded-type: Bounded(T)
, 
nat: ℕ
, 
bool: 𝔹
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
true: True
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
sq_exists: ∃x:A [B[x]]
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
bounded-type: Bounded(T)
Lemmas referenced : 
istype-nat, 
istype-le, 
iff_weakening_equal, 
subtype_rel_self, 
absval_pos, 
istype-int, 
true_wf, 
squash_wf, 
le_wf, 
bool_wf, 
nat_wf, 
cantor-to-int-bounded
Rules used in proof : 
functionIsType, 
independent_functionElimination, 
independent_isectElimination, 
universeEquality, 
instantiate, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
inhabitedIsType, 
universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
isectElimination, 
imageElimination, 
dependent_set_memberEquality_alt, 
productElimination, 
functionEquality, 
closedConclusion, 
sqequalRule, 
because_Cache, 
rename, 
setElimination, 
lambdaEquality_alt, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
Bounded(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})
Date html generated:
2019_10_15-AM-10_26_23
Last ObjectModification:
2019_10_07-PM-04_52_56
Theory : continuity
Home
Index