Nuprl Lemma : bounded-type-cantor

Bounded(ℕ ⟶ 𝔹)


Proof




Definitions occuring in Statement :  bounded-type: Bounded(T) nat: bool: 𝔹 function: x:A ⟶ B[x]
Definitions unfolded in proof :  implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a true: True prop: uall: [x:A]. B[x] squash: T sq_exists: x:A [B[x]] exists: x:A. B[x] nat: subtype_rel: A ⊆B member: t ∈ T all: x:A. B[x] bounded-type: Bounded(T)
Lemmas referenced :  istype-nat istype-le iff_weakening_equal subtype_rel_self absval_pos istype-int true_wf squash_wf le_wf bool_wf nat_wf cantor-to-int-bounded
Rules used in proof :  functionIsType independent_functionElimination independent_isectElimination universeEquality instantiate baseClosed imageMemberEquality natural_numberEquality inhabitedIsType universeIsType equalitySymmetry equalityTransitivity isectElimination imageElimination dependent_set_memberEquality_alt productElimination functionEquality closedConclusion sqequalRule because_Cache rename setElimination lambdaEquality_alt hypothesis hypothesisEquality applyEquality functionExtensionality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
Bounded(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})



Date html generated: 2019_10_15-AM-10_26_23
Last ObjectModification: 2019_10_07-PM-04_52_56

Theory : continuity


Home Index