Nuprl Lemma : general-cantor-to-int-bounded
∀B:ℕ ⟶ ℕ+. ∀F:(n:ℕ ⟶ ℕB[n]) ⟶ ℤ.  ∃bnd:ℕ. ∀f:n:ℕ ⟶ ℕB[n]. (|F f| ≤ bnd)
Proof
Definitions occuring in Statement : 
absval: |i|
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
surject: Surj(A;B;f)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
compose: f o g
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
iff_weakening_equal, 
subtype_rel_self, 
true_wf, 
squash_wf, 
le_wf, 
istype-int, 
nat_plus_wf, 
istype-nat, 
absval_wf, 
istype-le, 
int_seg_wf, 
bool_wf, 
nat_wf, 
compose_wf, 
cantor-to-int-bounded, 
cantor-to-general-cantor
Rules used in proof : 
independent_functionElimination, 
independent_isectElimination, 
universeEquality, 
instantiate, 
baseClosed, 
imageMemberEquality, 
inhabitedIsType, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
universeIsType, 
rename, 
setElimination, 
lambdaEquality_alt, 
functionIsType, 
dependent_pairFormation_alt, 
intEquality, 
sqequalRule, 
because_Cache, 
applyEquality, 
natural_numberEquality, 
hypothesis, 
functionEquality, 
isectElimination, 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}B:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}.  \mforall{}F:(n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[n])  {}\mrightarrow{}  \mBbbZ{}.    \mexists{}bnd:\mBbbN{}.  \mforall{}f:n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[n].  (|F  f|  \mleq{}  bnd)
Date html generated:
2019_10_15-AM-10_26_35
Last ObjectModification:
2019_10_03-PM-06_59_43
Theory : continuity
Home
Index