Nuprl Lemma : general-cantor-to-int-bounded

B:ℕ ⟶ ℕ+. ∀F:(n:ℕ ⟶ ℕB[n]) ⟶ ℤ.  ∃bnd:ℕ. ∀f:n:ℕ ⟶ ℕB[n]. (|F f| ≤ bnd)


Proof




Definitions occuring in Statement :  absval: |i| int_seg: {i..j-} nat_plus: + nat: so_apply: x[s] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a true: True prop: squash: T surject: Surj(A;B;f) nat_plus: + nat: compose: g subtype_rel: A ⊆B so_apply: x[s] uall: [x:A]. B[x] and: P ∧ Q exists: x:A. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  iff_weakening_equal subtype_rel_self true_wf squash_wf le_wf istype-int nat_plus_wf istype-nat absval_wf istype-le int_seg_wf bool_wf nat_wf compose_wf cantor-to-int-bounded cantor-to-general-cantor
Rules used in proof :  independent_functionElimination independent_isectElimination universeEquality instantiate baseClosed imageMemberEquality inhabitedIsType equalitySymmetry equalityTransitivity imageElimination universeIsType rename setElimination lambdaEquality_alt functionIsType dependent_pairFormation_alt intEquality sqequalRule because_Cache applyEquality natural_numberEquality hypothesis functionEquality isectElimination productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}B:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}.  \mforall{}F:(n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[n])  {}\mrightarrow{}  \mBbbZ{}.    \mexists{}bnd:\mBbbN{}.  \mforall{}f:n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[n].  (|F  f|  \mleq{}  bnd)



Date html generated: 2019_10_15-AM-10_26_35
Last ObjectModification: 2019_10_03-PM-06_59_43

Theory : continuity


Home Index