Nuprl Lemma : cantor-to-general-cantor
∀B:ℕ ⟶ ℕ+
  ∃f:(ℕ ⟶ 𝔹) ⟶ n:ℕ ⟶ ℕB[n]
   (Surj(ℕ ⟶ 𝔹;n:ℕ ⟶ ℕB[n];f)
   ∧ (∀k:ℕ. ∃j:ℕ. ∀p,q:ℕ ⟶ 𝔹.  ((p = q ∈ (ℕj ⟶ 𝔹)) 
⇒ ((f p) = (f q) ∈ (n:ℕk ⟶ ℕB[n])))))
Proof
Definitions occuring in Statement : 
surject: Surj(A;B;f)
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
bool: 𝔹
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
inject: Inj(A;B;f)
, 
compose: f o g
, 
surject: Surj(A;B;f)
, 
biject: Bij(A;B;f)
, 
equipollent: A ~ B
, 
pi1: fst(t)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
subtract: n - m
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
cand: A c∧ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
le: A ≤ B
, 
guard: {T}
, 
false: False
, 
prop: ℙ
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
int_seg_subtype, 
equal_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
subtype_rel_function, 
istype-universe, 
equipollent_wf, 
equipollent-int_seg-shift, 
decidable__equal_int_seg, 
compose_wf, 
surject_wf, 
lelt_wf, 
ifthenelse_wf, 
equipollent_transitivity, 
equipollent-two, 
indep-function_functionality_wrt_equipollent, 
equipollent-exp, 
equal-wf-base, 
primrec-wf2, 
le_weakening2, 
le_weakening, 
le_functionality, 
imax_ub, 
exp_functionality_wrt_le_1, 
imax_nat, 
add-zero, 
zero-mul, 
add-mul-special, 
add-swap, 
minus-one-mul, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
primrec-wf-nat-plus, 
general_add_assoc, 
iff_weakening_equal, 
subtype_rel_self, 
true_wf, 
squash_wf, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
istype-false, 
decidable__equal_int, 
add-subtract-cancel, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
primrec-unroll, 
primrec0_lemma, 
int_seg_wf, 
false_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
add_nat_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
int_seg_properties, 
nat_wf, 
primrec_wf, 
nat_plus_subtype_nat, 
exp_wf2, 
istype-le, 
log-property, 
istype-nat, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermVar_wf, 
intformand_wf, 
nat_plus_properties, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
istype-int, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__lt, 
nat_properties, 
nat_plus_wf, 
imax_nat_plus, 
istype-less_than, 
log_wf, 
imax_wf
Rules used in proof : 
functionExtensionality, 
productEquality, 
setIsType, 
baseApply, 
inlFormation_alt, 
functionEquality, 
universeEquality, 
sqequalBase, 
productIsType, 
intEquality, 
cumulativity, 
instantiate, 
equalityElimination, 
promote_hyp, 
pointwiseFunctionality, 
imageElimination, 
addEquality, 
productElimination, 
functionIsType, 
equalityIstype, 
int_eqEquality, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
inhabitedIsType, 
voidElimination, 
isect_memberEquality_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
dependent_functionElimination, 
universeIsType, 
rename, 
setElimination, 
closedConclusion, 
applyEquality, 
because_Cache, 
hypothesis, 
baseClosed, 
hypothesisEquality, 
imageMemberEquality, 
independent_pairFormation, 
sqequalRule, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}B:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}
    \mexists{}f:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[n]
      (Surj(\mBbbN{}  {}\mrightarrow{}  \mBbbB{};n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[n];f)  \mwedge{}  (\mforall{}k:\mBbbN{}.  \mexists{}j:\mBbbN{}.  \mforall{}p,q:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((p  =  q)  {}\mRightarrow{}  ((f  p)  =  (f  q)))))
Date html generated:
2019_10_15-AM-10_26_32
Last ObjectModification:
2019_10_03-PM-06_54_31
Theory : continuity
Home
Index