Nuprl Lemma : cantor-to-general-cantor

B:ℕ ⟶ ℕ+
  ∃f:(ℕ ⟶ 𝔹) ⟶ n:ℕ ⟶ ℕB[n]
   (Surj(ℕ ⟶ 𝔹;n:ℕ ⟶ ℕB[n];f)
   ∧ (∀k:ℕ. ∃j:ℕ. ∀p,q:ℕ ⟶ 𝔹.  ((p q ∈ (ℕj ⟶ 𝔹))  ((f p) (f q) ∈ (n:ℕk ⟶ ℕB[n])))))


Proof




Definitions occuring in Statement :  surject: Surj(A;B;f) int_seg: {i..j-} nat_plus: + nat: bool: 𝔹 so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  inject: Inj(A;B;f) compose: g surject: Surj(A;B;f) biject: Bij(A;B;f) equipollent: B pi1: fst(t) rev_uimplies: rev_uimplies(P;Q) subtract: m so_apply: x[s] so_lambda: λ2x.t[x] iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 cand: c∧ B lelt: i ≤ j < k int_seg: {i..j-} le: A ≤ B guard: {T} false: False prop: top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: subtype_rel: A ⊆B and: P ∧ Q true: True less_than': less_than'(a;b) squash: T less_than: a < b uall: [x:A]. B[x] nat_plus: + member: t ∈ T exists: x:A. B[x] all: x:A. B[x]
Lemmas referenced :  int_seg_subtype equal_wf subtype_rel_dep_function int_seg_subtype_nat subtype_rel_function istype-universe equipollent_wf equipollent-int_seg-shift decidable__equal_int_seg compose_wf surject_wf lelt_wf ifthenelse_wf equipollent_transitivity equipollent-two indep-function_functionality_wrt_equipollent equipollent-exp equal-wf-base primrec-wf2 le_weakening2 le_weakening le_functionality imax_ub exp_functionality_wrt_le_1 imax_nat add-zero zero-mul add-mul-special add-swap minus-one-mul int_term_value_subtract_lemma itermSubtract_wf subtract_wf primrec-wf-nat-plus general_add_assoc iff_weakening_equal subtype_rel_self true_wf squash_wf int_subtype_base le_wf set_subtype_base istype-false decidable__equal_int add-subtract-cancel less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf primrec-unroll primrec0_lemma int_seg_wf false_wf int_term_value_add_lemma itermAdd_wf add_nat_wf int_formula_prop_le_lemma intformle_wf decidable__le int_seg_properties nat_wf primrec_wf nat_plus_subtype_nat exp_wf2 istype-le log-property istype-nat int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf intformand_wf nat_plus_properties int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_less_lemma istype-void int_formula_prop_not_lemma istype-int itermConstant_wf intformless_wf intformnot_wf full-omega-unsat decidable__lt nat_properties nat_plus_wf imax_nat_plus istype-less_than log_wf imax_wf
Rules used in proof :  functionExtensionality productEquality setIsType baseApply inlFormation_alt functionEquality universeEquality sqequalBase productIsType intEquality cumulativity instantiate equalityElimination promote_hyp pointwiseFunctionality imageElimination addEquality productElimination functionIsType equalityIstype int_eqEquality applyLambdaEquality equalitySymmetry equalityTransitivity inhabitedIsType voidElimination isect_memberEquality_alt independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_functionElimination universeIsType rename setElimination closedConclusion applyEquality because_Cache hypothesis baseClosed hypothesisEquality imageMemberEquality independent_pairFormation sqequalRule natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction dependent_set_memberEquality_alt lambdaEquality_alt dependent_pairFormation_alt cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}B:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}
    \mexists{}f:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[n]
      (Surj(\mBbbN{}  {}\mrightarrow{}  \mBbbB{};n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[n];f)  \mwedge{}  (\mforall{}k:\mBbbN{}.  \mexists{}j:\mBbbN{}.  \mforall{}p,q:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((p  =  q)  {}\mRightarrow{}  ((f  p)  =  (f  q)))))



Date html generated: 2019_10_15-AM-10_26_32
Last ObjectModification: 2019_10_03-PM-06_54_31

Theory : continuity


Home Index