Nuprl Lemma : exp_functionality_wrt_le_1

[b:ℕ+]. ∀[x,y:ℕ].  b^x ≤ b^y supposing x ≤ y


Proof




Definitions occuring in Statement :  exp: i^n nat_plus: + nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B
Definitions unfolded in proof :  uiff: uiff(P;Q) le: A ≤ B rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B true: True squash: T guard: {T} sq_type: SQType(T) and: P ∧ Q prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  nat_plus: + so_apply: x[s] so_lambda: λ2x.t[x] nat: uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_plus_wf istype-nat le_witness_for_triv false_wf int_term_value_mul_lemma itermMultiply_wf multiply-is-int-iff exp_wf4 mul_preserves_le istype-less_than int_formula_prop_less_lemma intformless_wf decidable__lt exp_wf_nat_plus iff_weakening_equal subtype_rel_self exp_add exp_wf2 true_wf squash_wf istype-le int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma itermConstant_wf intformle_wf intformand_wf decidable__le int_formula_prop_wf int_term_value_subtract_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_eq_lemma istype-void int_formula_prop_not_lemma itermSubtract_wf itermAdd_wf itermVar_wf intformeq_wf intformnot_wf full-omega-unsat subtract_wf decidable__equal_int nat_plus_properties nat_properties int_subtype_base istype-int le_wf set_subtype_base nat_wf subtype_base_sq
Rules used in proof :  isectIsTypeImplies equalityIstype closedConclusion baseApply promote_hyp pointwiseFunctionality multiplyEquality applyLambdaEquality productElimination universeEquality baseClosed imageMemberEquality imageElimination applyEquality lambdaFormation_alt inhabitedIsType equalitySymmetry equalityTransitivity independent_pairFormation because_Cache dependent_set_memberEquality_alt universeIsType voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation unionElimination addEquality dependent_functionElimination rename setElimination hypothesisEquality natural_numberEquality lambdaEquality_alt intEquality sqequalRule independent_isectElimination hypothesis cumulativity isectElimination sqequalHypSubstitution extract_by_obid instantiate thin cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[b:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbN{}].    b\^{}x  \mleq{}  b\^{}y  supposing  x  \mleq{}  y



Date html generated: 2019_10_15-AM-10_25_18
Last ObjectModification: 2019_10_01-PM-02_17_59

Theory : num_thy_1


Home Index