Nuprl Lemma : exp_functionality_wrt_le_1
∀[b:ℕ+]. ∀[x,y:ℕ].  b^x ≤ b^y supposing x ≤ y
Proof
Definitions occuring in Statement : 
exp: i^n
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
sq_type: SQType(T)
, 
and: P ∧ Q
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
nat_plus_wf, 
istype-nat, 
le_witness_for_triv, 
false_wf, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
multiply-is-int-iff, 
exp_wf4, 
mul_preserves_le, 
istype-less_than, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
exp_wf_nat_plus, 
iff_weakening_equal, 
subtype_rel_self, 
exp_add, 
exp_wf2, 
true_wf, 
squash_wf, 
istype-le, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
decidable__le, 
int_formula_prop_wf, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
full-omega-unsat, 
subtract_wf, 
decidable__equal_int, 
nat_plus_properties, 
nat_properties, 
int_subtype_base, 
istype-int, 
le_wf, 
set_subtype_base, 
nat_wf, 
subtype_base_sq
Rules used in proof : 
isectIsTypeImplies, 
equalityIstype, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
multiplyEquality, 
applyLambdaEquality, 
productElimination, 
universeEquality, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
applyEquality, 
lambdaFormation_alt, 
inhabitedIsType, 
equalitySymmetry, 
equalityTransitivity, 
independent_pairFormation, 
because_Cache, 
dependent_set_memberEquality_alt, 
universeIsType, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
addEquality, 
dependent_functionElimination, 
rename, 
setElimination, 
hypothesisEquality, 
natural_numberEquality, 
lambdaEquality_alt, 
intEquality, 
sqequalRule, 
independent_isectElimination, 
hypothesis, 
cumulativity, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[b:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbN{}].    b\^{}x  \mleq{}  b\^{}y  supposing  x  \mleq{}  y
Date html generated:
2019_10_15-AM-10_25_18
Last ObjectModification:
2019_10_01-PM-02_17_59
Theory : num_thy_1
Home
Index