Nuprl Lemma : equipollent-int_seg-shift

n:ℤ. ∀m:ℕ.  {n..n m-~ ℕm


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: all: x:A. B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  subtract: m prop: top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  not: ¬A false: False assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  uimplies: supposing a uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q implies:  Q nat: member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  istype-nat equipollent_same zero-mul add-mul-special add-swap add-zero minus-one-mul minus-zero add-associates int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_not_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma istype-void int_formula_prop_and_lemma istype-int itermConstant_wf intformnot_wf itermAdd_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat nat_properties istype-less_than less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert equipollent-int_seg subtract_wf lt_int_wf ifthenelse_wf int_seg_wf equipollent_functionality_wrt_equipollent
Rules used in proof :  universeIsType independent_pairFormation isect_memberEquality_alt int_eqEquality lambdaEquality_alt approximateComputation voidElimination cumulativity instantiate promote_hyp equalityIstype dependent_pairFormation_alt equalitySymmetry equalityTransitivity sqequalRule independent_isectElimination equalityElimination unionElimination inhabitedIsType productElimination dependent_functionElimination independent_functionElimination intEquality because_Cache natural_numberEquality hypothesis rename setElimination addEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbZ{}.  \mforall{}m:\mBbbN{}.    \{n..n  +  m\msupminus{}\}  \msim{}  \mBbbN{}m



Date html generated: 2019_10_15-AM-10_25_08
Last ObjectModification: 2019_10_01-PM-03_03_39

Theory : equipollence!!cardinality!


Home Index