Nuprl Lemma : equipollent-int_seg-shift
∀n:ℤ. ∀m:ℕ.  {n..n + m-} ~ ℕm
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
subtract: n - m
, 
prop: ℙ
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
not: ¬A
, 
false: False
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
istype-nat, 
equipollent_same, 
zero-mul, 
add-mul-special, 
add-swap, 
add-zero, 
minus-one-mul, 
minus-zero, 
add-associates, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermConstant_wf, 
intformnot_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
istype-less_than, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
equipollent-int_seg, 
subtract_wf, 
lt_int_wf, 
ifthenelse_wf, 
int_seg_wf, 
equipollent_functionality_wrt_equipollent
Rules used in proof : 
universeIsType, 
independent_pairFormation, 
isect_memberEquality_alt, 
int_eqEquality, 
lambdaEquality_alt, 
approximateComputation, 
voidElimination, 
cumulativity, 
instantiate, 
promote_hyp, 
equalityIstype, 
dependent_pairFormation_alt, 
equalitySymmetry, 
equalityTransitivity, 
sqequalRule, 
independent_isectElimination, 
equalityElimination, 
unionElimination, 
inhabitedIsType, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
intEquality, 
because_Cache, 
natural_numberEquality, 
hypothesis, 
rename, 
setElimination, 
addEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n:\mBbbZ{}.  \mforall{}m:\mBbbN{}.    \{n..n  +  m\msupminus{}\}  \msim{}  \mBbbN{}m
Date html generated:
2019_10_15-AM-10_25_08
Last ObjectModification:
2019_10_01-PM-03_03_39
Theory : equipollence!!cardinality!
Home
Index