Nuprl Lemma : equipollent-int_seg

n,m:ℤ.  {n..m-~ ℕif n <then else fi 


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} ifthenelse: if then else fi  lt_int: i <j all: x:A. B[x] subtract: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A equipollent: B int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top biject: Bij(A;B;f) inject: Inj(A;B;f) decidable: Dec(P) surject: Surj(A;B;f)
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int equipollent_interval eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf intformle_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_wf int_seg_wf decidable__equal_int itermSubtract_wf itermConstant_wf int_term_value_subtract_lemma int_term_value_constant_lemma lelt_wf biject_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule dependent_functionElimination dependent_pairFormation promote_hyp instantiate because_Cache independent_functionElimination voidElimination lambdaEquality setElimination rename natural_numberEquality int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll applyLambdaEquality dependent_set_memberEquality functionExtensionality applyEquality

Latex:
\mforall{}n,m:\mBbbZ{}.    \{n..m\msupminus{}\}  \msim{}  \mBbbN{}if  n  <z  m  then  m  -  n  else  0  fi 



Date html generated: 2017_04_17-AM-09_31_34
Last ObjectModification: 2017_02_27-PM-05_31_43

Theory : equipollence!!cardinality!


Home Index