Nuprl Lemma : equipollent-two

𝔹 ~ ℕ2


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} bool: 𝔹 natural_number: $n
Definitions unfolded in proof :  equipollent: B exists: x:A. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: less_than: a < b squash: T true: True bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B decidable: Dec(P)
Lemmas referenced :  bool_wf eqtt_to_assert false_wf lelt_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot int_seg_wf biject_wf btrue_wf equal-wf-base int_seg_properties satisfiable-full-omega-tt intformeq_wf itermConstant_wf int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf iff_imp_equal_bool bfalse_wf assert_elim int_subtype_base assert_wf equal-wf-base-T decidable__equal_int intformnot_wf int_formula_prop_not_lemma equal-wf-T-base int_seg_subtype int_seg_cases intformand_wf intformless_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_pairFormation lambdaEquality cut hypothesisEquality hypothesis thin introduction extract_by_obid lambdaFormation sqequalHypSubstitution unionElimination equalityElimination sqequalRule isectElimination productElimination independent_isectElimination dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache voidElimination functionExtensionality applyEquality applyLambdaEquality setElimination rename intEquality isect_memberEquality voidEquality computeAll addLevel levelHypothesis hypothesis_subsumption addEquality int_eqEquality

Latex:
\mBbbB{}  \msim{}  \mBbbN{}2



Date html generated: 2017_04_17-AM-09_31_30
Last ObjectModification: 2017_02_27-PM-05_31_41

Theory : equipollence!!cardinality!


Home Index