Nuprl Lemma : equipollent-two
𝔹 ~ ℕ2
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
bool: 𝔹
, 
natural_number: $n
Definitions unfolded in proof : 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
false_wf, 
lelt_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
int_seg_wf, 
biject_wf, 
btrue_wf, 
equal-wf-base, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
iff_imp_equal_bool, 
bfalse_wf, 
assert_elim, 
int_subtype_base, 
assert_wf, 
equal-wf-base-T, 
decidable__equal_int, 
intformnot_wf, 
int_formula_prop_not_lemma, 
equal-wf-T-base, 
int_seg_subtype, 
int_seg_cases, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_pairFormation, 
lambdaEquality, 
cut, 
hypothesisEquality, 
hypothesis, 
thin, 
introduction, 
extract_by_obid, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
sqequalRule, 
isectElimination, 
productElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
functionExtensionality, 
applyEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
addLevel, 
levelHypothesis, 
hypothesis_subsumption, 
addEquality, 
int_eqEquality
Latex:
\mBbbB{}  \msim{}  \mBbbN{}2
Date html generated:
2017_04_17-AM-09_31_30
Last ObjectModification:
2017_02_27-PM-05_31_41
Theory : equipollence!!cardinality!
Home
Index