Nuprl Lemma : min-increasing-sequence-prop2

b,a:ℕ ⟶ ℕ. ∀n,x,k:ℕ.
  ((b a ∈ (ℕx ⟶ ℕ))
   increasing-sequence(a)
   (min-increasing-sequence(b;n;(a x) 1) (inl k) ∈ (ℕ?))
   (x ≤ k))


Proof




Definitions occuring in Statement :  min-increasing-sequence: min-increasing-sequence(a;n;k) increasing-sequence: increasing-sequence(a) int_seg: {i..j-} nat: le: A ≤ B all: x:A. B[x] implies:  Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  iff: ⇐⇒ Q true: True squash: T lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s] so_lambda: λ2x.t[x] top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a uiff: uiff(P;Q) or: P ∨ Q decidable: Dec(P) ge: i ≥  guard: {T} not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B subtype_rel: A ⊆B nat: uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  int_seg_properties increasing-sequence-prop1 iff_weakening_equal true_wf squash_wf and_wf lelt_wf int_formula_prop_less_lemma intformless_wf decidable__lt min-increasing-sequence-prop1 subtype_rel_self int_seg_subtype_nat subtype_rel_dep_function int_seg_wf increasing-sequence_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt add-is-int-iff decidable__le nat_properties le_wf false_wf add_nat_wf min-increasing-sequence_wf unit_wf2 nat_wf equal_wf
Rules used in proof :  universeEquality imageMemberEquality imageElimination functionEquality inlEquality independent_functionElimination computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_isectElimination productElimination baseClosed closedConclusion baseApply promote_hyp pointwiseFunctionality unionElimination dependent_functionElimination applyLambdaEquality equalitySymmetry equalityTransitivity independent_pairFormation natural_numberEquality sqequalRule rename setElimination lambdaEquality addEquality dependent_set_memberEquality because_Cache hypothesisEquality applyEquality functionExtensionality hypothesis unionEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}b,a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n,x,k:\mBbbN{}.
    ((b  =  a)
    {}\mRightarrow{}  increasing-sequence(a)
    {}\mRightarrow{}  (min-increasing-sequence(b;n;(a  x)  +  1)  =  (inl  k))
    {}\mRightarrow{}  (x  \mleq{}  k))



Date html generated: 2017_04_21-AM-11_20_53
Last ObjectModification: 2017_04_20-PM-05_34_59

Theory : continuity


Home Index