Nuprl Lemma : nat-pred_wf

[n:ℕ]. (n-1 ∈ ℕ)


Proof




Definitions occuring in Statement :  nat-pred: n-1 nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: nat-pred: n-1 member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties subtract_wf le_wf false_wf
Rules used in proof :  axiomEquality computeAll voidEquality voidElimination isect_memberEquality intEquality lambdaEquality dependent_pairFormation independent_isectElimination unionElimination dependent_functionElimination hypothesisEquality isectElimination extract_by_obid lambdaFormation independent_pairFormation equalitySymmetry equalityTransitivity dependent_set_memberEquality natural_numberEquality hypothesis because_Cache rename thin setElimination sqequalHypSubstitution int_eqEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  (n-1  \mmember{}  \mBbbN{})



Date html generated: 2017_04_21-AM-11_21_13
Last ObjectModification: 2017_04_20-PM-03_36_24

Theory : continuity


Home Index