Nuprl Lemma : nat2int_wf

[n:ℕ]. (nat2int(n) ∈ ℤ)


Proof




Definitions occuring in Statement :  nat2int: nat2int(m) nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat2int: nat2int(m) nat: true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  subtype_base_sq int_subtype_base istype-int eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule remainderEquality sqequalHypSubstitution setElimination thin rename because_Cache hypothesis closedConclusion natural_numberEquality Error :lambdaFormation_alt,  instantiate extract_by_obid isectElimination cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination Error :equalityIstype,  baseClosed sqequalBase Error :inhabitedIsType,  unionElimination equalityElimination productElimination int_eqReduceTrueSq divideEquality Error :dependent_pairFormation_alt,  hypothesisEquality promote_hyp int_eqReduceFalseSq minusEquality addEquality axiomEquality

Latex:
\mforall{}[n:\mBbbN{}].  (nat2int(n)  \mmember{}  \mBbbZ{})



Date html generated: 2019_06_20-PM-02_52_11
Last ObjectModification: 2019_02_06-PM-06_50_24

Theory : continuity


Home Index