Nuprl Lemma : rep-seq-from-0

[T:Type]. ∀[s:ℕ0 ⟶ T]. ∀[f:ℕ ⟶ T].  (rep-seq-from(s;0;f) f ∈ (ℕ ⟶ T))


Proof




Definitions occuring in Statement :  rep-seq-from: rep-seq-from(s;n;f) int_seg: {i..j-} nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rep-seq-from: rep-seq-from(s;n;f) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf nat_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot nat_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination computeAll promote_hyp instantiate cumulativity applyEquality functionEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[s:\mBbbN{}0  {}\mrightarrow{}  T].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].    (rep-seq-from(s;0;f)  =  f)



Date html generated: 2017_04_20-AM-07_21_05
Last ObjectModification: 2017_02_27-PM-05_56_25

Theory : continuity


Home Index