Nuprl Lemma : rep-seq-from-prop1

[T:Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ T]. ∀[f:ℕ ⟶ T]. ∀[m:{n...}].  (rep-seq-from(s;m;f) s ∈ (ℕn ⟶ T))


Proof




Definitions occuring in Statement :  rep-seq-from: rep-seq-from(s;n;f) int_upper: {i...} int_seg: {i..j-} nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  rep-seq-from: rep-seq-from(s;n;f) member: t ∈ T uall: [x:A]. B[x] int_seg: {i..j-} int_upper: {i...} all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b lelt: i ≤ j < k nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot int_seg_properties int_upper_properties nat_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf int_upper_wf nat_wf
Rules used in proof :  functionExtensionality sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache lessCases isect_memberFormation sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality natural_numberEquality imageMemberEquality baseClosed imageElimination independent_functionElimination applyEquality dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity lambdaEquality int_eqEquality intEquality computeAll functionEquality universeEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].  \mforall{}[m:\{n...\}].    (rep-seq-from(s;m;f)  =  s)



Date html generated: 2017_04_20-AM-07_21_09
Last ObjectModification: 2017_02_27-PM-05_56_27

Theory : continuity


Home Index