Nuprl Lemma : seq-append0-left

[t:Top]. ∀[m:ℕ]. ∀[f:ℕm ⟶ ℕ].  (seq-append(0;m;t;f) f ∈ (ℕm ⟶ ℕ))


Proof




Definitions occuring in Statement :  seq-append: seq-append(n;m;s1;s2) int_seg: {i..j-} nat: uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T seq-append: seq-append(n;m;s1;s2) int_seg: {i..j-} all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: guard: {T} nat: ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] le: A ≤ B subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b subtract: m
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf int_seg_properties nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf lelt_wf le_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot minus-zero add-zero intformnot_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_add_lemma nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll applyEquality dependent_set_memberEquality promote_hyp instantiate cumulativity addEquality functionEquality axiomEquality

Latex:
\mforall{}[t:Top].  \mforall{}[m:\mBbbN{}].  \mforall{}[f:\mBbbN{}m  {}\mrightarrow{}  \mBbbN{}].    (seq-append(0;m;t;f)  =  f)



Date html generated: 2017_04_17-AM-10_02_51
Last ObjectModification: 2017_02_27-PM-05_54_24

Theory : continuity


Home Index