Nuprl Lemma : strong-continuity-test-bound-prop3

[M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)]. ∀[n,m:ℕ]. ∀[f:ℕ ⟶ ℕ]. ∀[b:ℕn].
  (b < m
   (↑isl(M f))
   (↑isl(M f))
   (↑isl(strong-continuity-test-bound(M;n;f;b)))
   (↑isl(strong-continuity-test-bound(M;m;f;b)))
   (m n ∈ ℕ))


Proof




Definitions occuring in Statement :  strong-continuity-test-bound: strong-continuity-test-bound(M;n;f;b) int_seg: {i..j-} nat: assert: b isl: isl(x) less_than: a < b uall: [x:A]. B[x] implies:  Q unit: Unit apply: a function: x:A ⟶ B[x] union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b decidable: Dec(P) or: P ∨ Q guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top assert: b ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  le_wf int_term_value_constant_lemma int_formula_prop_le_lemma itermConstant_wf intformle_wf decidable__le int_formula_prop_eq_lemma intformeq_wf decidable__equal_int isr-not-isl int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt nat_properties int_seg_properties strong-continuity-test-bound-prop2 decidable__lt less_than_wf lelt_wf subtype_rel_self false_wf int_seg_subtype_nat subtype_rel_dep_function nat_wf strong-continuity-test-bound_wf unit_wf2 int_seg_wf isl_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename because_Cache hypothesis functionExtensionality applyEquality hypothesisEquality sqequalRule lambdaEquality independent_isectElimination independent_pairFormation lambdaFormation dependent_set_memberEquality productElimination functionEquality unionEquality isect_memberFormation introduction dependent_functionElimination axiomEquality isect_memberEquality unionElimination independent_functionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry

Latex:
\mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[b:\mBbbN{}n].
    (b  <  m
    {}\mRightarrow{}  (\muparrow{}isl(M  n  f))
    {}\mRightarrow{}  (\muparrow{}isl(M  m  f))
    {}\mRightarrow{}  (\muparrow{}isl(strong-continuity-test-bound(M;n;f;b)))
    {}\mRightarrow{}  (\muparrow{}isl(strong-continuity-test-bound(M;m;f;b)))
    {}\mRightarrow{}  (m  =  n))



Date html generated: 2016_05_19-AM-11_59_55
Last ObjectModification: 2016_05_17-PM-05_02_57

Theory : continuity


Home Index