Nuprl Lemma : decidable__all-list

[T:Type]
  ((∀x,y:T.  Dec(x y ∈ T))
   (∀L:T List. ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ]. ((∀x:{x:T| (x ∈ L)} Dec(P[x]))  Dec(∀x:{x:T| (x ∈ L)} P[x]))))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q sq_stable: SqStable(P) squash: T subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  decidable__l_all decidable_functionality iff_wf l_all_wf l_all_iff set_wf sq_stable__l_member equal_wf list_wf decidable_wf l_member_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionEquality cumulativity universeEquality independent_pairFormation dependent_functionElimination setElimination rename independent_functionElimination because_Cache introduction imageMemberEquality baseClosed imageElimination dependent_set_memberEquality addLevel productElimination impliesFunctionality

Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}L:T  List
                \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x:\{x:T|  (x  \mmember{}  L)\}  .  Dec(P[x]))  {}\mRightarrow{}  Dec(\mforall{}x:\{x:T|  (x  \mmember{}  L)\}  .  P[x])\000C)))



Date html generated: 2016_05_14-PM-03_31_48
Last ObjectModification: 2016_01_14-PM-11_20_26

Theory : decidable!equality


Home Index