Nuprl Lemma : list-diff-diff
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs,cs:T List].  (as-bs-cs = as-bs @ cs ∈ (T List))
Proof
Definitions occuring in Statement : 
list-diff: as-bs
, 
append: as @ bs
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
list-diff: as-bs
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
false: False
, 
guard: {T}
Lemmas referenced : 
assert-deq-member, 
assert_of_bnot, 
assert_of_band, 
iff_weakening_uiff, 
iff_transitivity, 
assert_wf, 
not_wf, 
and_wf, 
iff_wf, 
or_wf, 
member_append, 
append_wf, 
deq-member_wf, 
bnot_wf, 
band_wf, 
iff_imp_equal_bool, 
deq_wf, 
l_member_wf, 
filter_wf5, 
filter-filter
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
imageElimination, 
because_Cache, 
hypothesisEquality, 
setEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
setElimination, 
rename, 
independent_isectElimination, 
addLevel, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
impliesLevelFunctionality, 
lambdaFormation, 
unionElimination, 
inlFormation, 
inrFormation
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs,cs:T  List].    (as-bs-cs  =  as-bs  @  cs)
Date html generated:
2016_05_14-PM-03_29_57
Last ObjectModification:
2016_01_14-PM-11_21_06
Theory : decidable!equality
Home
Index