Nuprl Lemma : list-diff-diff

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs,cs:T List].  (as-bs-cs as-bs cs ∈ (T List))


Proof




Definitions occuring in Statement :  list-diff: as-bs append: as bs list: List deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  list-diff: as-bs uall: [x:A]. B[x] member: t ∈ T top: Top squash: T prop: true: True uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q not: ¬A all: x:A. B[x] implies:  Q rev_implies:  Q or: P ∨ Q false: False guard: {T}
Lemmas referenced :  assert-deq-member assert_of_bnot assert_of_band iff_weakening_uiff iff_transitivity assert_wf not_wf and_wf iff_wf or_wf member_append append_wf deq-member_wf bnot_wf band_wf iff_imp_equal_bool deq_wf l_member_wf filter_wf5 filter-filter
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis applyEquality lambdaEquality imageElimination because_Cache hypothesisEquality setEquality natural_numberEquality imageMemberEquality baseClosed axiomEquality setElimination rename independent_isectElimination addLevel productElimination independent_pairFormation impliesFunctionality dependent_functionElimination independent_functionElimination impliesLevelFunctionality lambdaFormation unionElimination inlFormation inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs,cs:T  List].    (as-bs-cs  =  as-bs  @  cs)



Date html generated: 2016_05_14-PM-03_29_57
Last ObjectModification: 2016_01_14-PM-11_21_06

Theory : decidable!equality


Home Index