Nuprl Lemma : name_eq_spread
∀[x,y,F:Top].  (name_eq(let a,b = x in F[a;b];y) ~ let a,b = x in name_eq(F[a;b];y))
Proof
Definitions occuring in Statement : 
name_eq: name_eq(x;y)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
spread: spread def, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s1;s2]
, 
name_eq: name_eq(x;y)
, 
name-deq: NameDeq
, 
list-deq: list-deq(eq)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
eq_atom: x =a y
, 
band: p ∧b q
, 
bfalse: ff
, 
list_ind: list_ind, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
null: null(as)
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
or: P ∨ Q
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
atomdeq_reduce_lemma, 
istype-void, 
lifting-strict-atom_eq, 
strict4-decide, 
lifting-strict-callbyvalue, 
strict4-apply, 
lifting-strict-spread, 
has-value_wf_base, 
istype-base, 
is-exception_wf, 
lifting-strict-ispair, 
lifting-strict-isaxiom, 
strictness-apply, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
isectElimination, 
baseClosed, 
independent_isectElimination, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
callbyvalueCallbyvalue, 
callbyvalueReduce, 
Error :universeIsType, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
callbyvalueExceptionCases, 
Error :inrFormation_alt, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
Error :inlFormation_alt, 
axiomSqEquality, 
Error :inhabitedIsType, 
Error :isectIsTypeImplies
Latex:
\mforall{}[x,y,F:Top].    (name\_eq(let  a,b  =  x  in  F[a;b];y)  \msim{}  let  a,b  =  x  in  name\_eq(F[a;b];y))
Date html generated:
2019_06_20-PM-01_58_03
Last ObjectModification:
2019_01_29-AM-09_26_25
Theory : decidable!equality
Home
Index