Nuprl Lemma : no_repeats_l_index-inj

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List].  Inj({x:T| (x ∈ L)} ;ℕ||L||;λx.index(L;x)) supposing no_repeats(T;L)


Proof




Definitions occuring in Statement :  l_index: index(L;x) no_repeats: no_repeats(T;l) l_member: (x ∈ l) length: ||as|| list: List deq: EqDecider(T) inject: Inj(A;B;f) int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  lambda: λx.A[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T inject: Inj(A;B;f) all: x:A. B[x] implies:  Q prop: so_apply: x[s] so_lambda: λ2x.t[x] top: Top not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} guard: {T} nat: cand: c∧ B exists: x:A. B[x] l_member: (x ∈ l) subtype_rel: A ⊆B squash: T le: A ≤ B
Lemmas referenced :  no_repeats_wf list_wf deq_wf l_member_wf set_wf l_index_wf length_wf int_seg_wf equal_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties nat_properties select_wf less_than_wf nat_wf exists_wf le_wf squash_wf lelt_wf no_repeats_l_index
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution Error :lambdaEquality_alt,  dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :universeIsType,  extract_by_obid isectElimination universeEquality lambdaEquality because_Cache independent_isectElimination cumulativity natural_numberEquality rename setElimination lambdaFormation computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality unionElimination productEquality independent_pairFormation dependent_pairFormation applyLambdaEquality hyp_replacement equalitySymmetry equalityTransitivity dependent_set_memberEquality productElimination baseClosed imageMemberEquality imageElimination applyEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].
    Inj(\{x:T|  (x  \mmember{}  L)\}  ;\mBbbN{}||L||;\mlambda{}x.index(L;x))  supposing  no\_repeats(T;L)



Date html generated: 2019_06_20-PM-01_57_00
Last ObjectModification: 2018_10_06-AM-11_23_40

Theory : decidable!equality


Home Index