Nuprl Lemma : l_index_wf

[T:Type]. ∀[dT:EqDecider(T)]. ∀[L:T List]. ∀[x:T].  index(L;x) ∈ ℕ||L|| supposing (x ∈ L)


Proof




Definitions occuring in Statement :  l_index: index(L;x) l_member: (x ∈ l) length: ||as|| list: List deq: EqDecider(T) int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n universe: Type
Definitions unfolded in proof :  l_index: index(L;x) uall: [x:A]. B[x] member: t ∈ T deq: EqDecider(T) int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T l_member: (x ∈ l) nat: le: A ≤ B cand: c∧ B eqof: eqof(d) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) ge: i ≥ 
Lemmas referenced :  nat_properties assert_wf safe-assert-deq lelt_wf deq_wf list_wf l_member_wf int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf int_seg_properties select_wf length_wf_nat mu-bound
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality setElimination rename cumulativity independent_isectElimination natural_numberEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll because_Cache imageElimination universeEquality isect_memberFormation introduction axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[dT:EqDecider(T)].  \mforall{}[L:T  List].  \mforall{}[x:T].    index(L;x)  \mmember{}  \mBbbN{}||L||  supposing  (x  \mmember{}  L)



Date html generated: 2016_05_14-PM-03_31_54
Last ObjectModification: 2016_01_14-PM-11_20_23

Theory : decidable!equality


Home Index