Step
*
1
1
of Lemma
str-to-nat-to-str
1. n : ℤ
2. 10 ≤ n
3. ∀n:ℕn. (str-to-nat(nat-to-str(n)) = n ∈ ℤ)
4. n = (((n ÷ 10) * 10) + (n rem 10)) ∈ ℤ
5. (0 ≤ (n rem 10)) ∧ n rem 10 < 10
6. str-to-nat(nat-to-str(n ÷ 10)) = (n ÷ 10) ∈ ℤ
⊢ str-to-nat(nat-to-str(n ÷ 10) @ nat-to-str(n rem 10)) = n ∈ ℤ
BY
{ Assert ⌜(str-to-nat(nat-to-str(n rem 10)) = (n rem 10) ∈ ℤ) ∧ (||nat-to-str(n rem 10)|| = 1 ∈ ℤ)⌝⋅ }
1
.....assertion.....
1. n : ℤ
2. 10 ≤ n
3. ∀n:ℕn. (str-to-nat(nat-to-str(n)) = n ∈ ℤ)
4. n = (((n ÷ 10) * 10) + (n rem 10)) ∈ ℤ
5. (0 ≤ (n rem 10)) ∧ n rem 10 < 10
6. str-to-nat(nat-to-str(n ÷ 10)) = (n ÷ 10) ∈ ℤ
⊢ (str-to-nat(nat-to-str(n rem 10)) = (n rem 10) ∈ ℤ) ∧ (||nat-to-str(n rem 10)|| = 1 ∈ ℤ)
2
1. n : ℤ
2. 10 ≤ n
3. ∀n:ℕn. (str-to-nat(nat-to-str(n)) = n ∈ ℤ)
4. n = (((n ÷ 10) * 10) + (n rem 10)) ∈ ℤ
5. (0 ≤ (n rem 10)) ∧ n rem 10 < 10
6. str-to-nat(nat-to-str(n ÷ 10)) = (n ÷ 10) ∈ ℤ
7. (str-to-nat(nat-to-str(n rem 10)) = (n rem 10) ∈ ℤ) ∧ (||nat-to-str(n rem 10)|| = 1 ∈ ℤ)
⊢ str-to-nat(nat-to-str(n ÷ 10) @ nat-to-str(n rem 10)) = n ∈ ℤ
Latex:
Latex:
1. n : \mBbbZ{}
2. 10 \mleq{} n
3. \mforall{}n:\mBbbN{}n. (str-to-nat(nat-to-str(n)) = n)
4. n = (((n \mdiv{} 10) * 10) + (n rem 10))
5. (0 \mleq{} (n rem 10)) \mwedge{} n rem 10 < 10
6. str-to-nat(nat-to-str(n \mdiv{} 10)) = (n \mdiv{} 10)
\mvdash{} str-to-nat(nat-to-str(n \mdiv{} 10) @ nat-to-str(n rem 10)) = n
By
Latex:
Assert \mkleeneopen{}(str-to-nat(nat-to-str(n rem 10)) = (n rem 10)) \mwedge{} (||nat-to-str(n rem 10)|| = 1)\mkleeneclose{}\mcdot{}
Home
Index