Step
*
1
1
2
of Lemma
str-to-nat-to-str
1. n : ℤ
2. 10 ≤ n
3. ∀n:ℕn. (str-to-nat(nat-to-str(n)) = n ∈ ℤ)
4. n = (((n ÷ 10) * 10) + (n rem 10)) ∈ ℤ
5. (0 ≤ (n rem 10)) ∧ n rem 10 < 10
6. str-to-nat(nat-to-str(n ÷ 10)) = (n ÷ 10) ∈ ℤ
7. (str-to-nat(nat-to-str(n rem 10)) = (n rem 10) ∈ ℤ) ∧ (||nat-to-str(n rem 10)|| = 1 ∈ ℤ)
⊢ str-to-nat(nat-to-str(n ÷ 10) @ nat-to-str(n rem 10)) = n ∈ ℤ
BY
{ (RepeatFor 2 (MoveToConcl (-1))
THEN (GenConcl ⌜nat-to-str(n ÷ 10) = q ∈ (Atom List)⌝⋅ THENA Auto)
THEN (GenConcl ⌜nat-to-str(n rem 10) = r ∈ (Atom List)⌝⋅ THENA Auto)) }
1
1. n : ℤ
2. 10 ≤ n
3. ∀n:ℕn. (str-to-nat(nat-to-str(n)) = n ∈ ℤ)
4. n = (((n ÷ 10) * 10) + (n rem 10)) ∈ ℤ
5. (0 ≤ (n rem 10)) ∧ n rem 10 < 10
6. q : Atom List
7. nat-to-str(n ÷ 10) = q ∈ (Atom List)
8. r : Atom List
9. nat-to-str(n rem 10) = r ∈ (Atom List)
⊢ (str-to-nat(q) = (n ÷ 10) ∈ ℤ)
⇒ ((str-to-nat(r) = (n rem 10) ∈ ℤ) ∧ (||r|| = 1 ∈ ℤ))
⇒ (str-to-nat(q @ r) = n ∈ ℤ)
Latex:
Latex:
1. n : \mBbbZ{}
2. 10 \mleq{} n
3. \mforall{}n:\mBbbN{}n. (str-to-nat(nat-to-str(n)) = n)
4. n = (((n \mdiv{} 10) * 10) + (n rem 10))
5. (0 \mleq{} (n rem 10)) \mwedge{} n rem 10 < 10
6. str-to-nat(nat-to-str(n \mdiv{} 10)) = (n \mdiv{} 10)
7. (str-to-nat(nat-to-str(n rem 10)) = (n rem 10)) \mwedge{} (||nat-to-str(n rem 10)|| = 1)
\mvdash{} str-to-nat(nat-to-str(n \mdiv{} 10) @ nat-to-str(n rem 10)) = n
By
Latex:
(RepeatFor 2 (MoveToConcl (-1))
THEN (GenConcl \mkleeneopen{}nat-to-str(n \mdiv{} 10) = q\mkleeneclose{}\mcdot{} THENA Auto)
THEN (GenConcl \mkleeneopen{}nat-to-str(n rem 10) = r\mkleeneclose{}\mcdot{} THENA Auto))
Home
Index