Nuprl Lemma : str-to-nat-to-str

[n:ℕ]. (str-to-nat(nat-to-str(n)) n ∈ ℤ)


Proof




Definitions occuring in Statement :  str-to-nat: str-to-nat(s) nat-to-str: nat-to-str(n) nat: uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) nat-to-str: nat-to-str(n) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  str-to-nat: str-to-nat(s) str-to-nat-plus: str-to-nat-plus(s;n) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] str1-to-nat: str1-to-nat(a) eq_atom: =a y bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b less_than: a < b int_nzero: -o true: True nequal: a ≠ b ∈  nat_plus: + squash: T iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] append: as bs
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma le_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int list_ind_cons_lemma list_ind_nil_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nequal-le-implies decidable__lt lelt_wf itermAdd_wf int_term_value_add_lemma nat_wf div_rem_sum int_subtype_base equal-wf-base true_wf nequal_wf rem_bounds_1 add-is-int-iff multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma squash_wf iff_weakening_equal length_of_cons_lemma length_of_nil_lemma nat-to-str_wf divide_wf list_wf remainder_wf equal-wf-base-T list_subtype_base atom_subtype_base list_induction all_wf str-to-nat-plus_wf append_wf str1-to-nat_wf add_nat_wf str-to-nat_wf exp_wf2 length_wf_nat length-append str-to-nat-plus-property add_functionality_wrt_eq length_wf add-associates mul-distributes-right mul-associates mul-commutes mul-swap zero-mul add-zero zero-add add-commutes exp_add exp1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut thin lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality because_Cache productElimination unionElimination applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality equalityElimination promote_hyp instantiate cumulativity addEquality addLevel baseClosed imageMemberEquality divideEquality imageElimination pointwiseFunctionality baseApply closedConclusion universeEquality remainderEquality productEquality atomEquality multiplyEquality functionEquality equalityUniverse levelHypothesis

Latex:
\mforall{}[n:\mBbbN{}].  (str-to-nat(nat-to-str(n))  =  n)



Date html generated: 2017_04_17-AM-09_18_20
Last ObjectModification: 2017_02_27-PM-05_23_10

Theory : decidable!equality


Home Index