Nuprl Lemma : str-to-nat-to-str
∀[n:ℕ]. (str-to-nat(nat-to-str(n)) = n ∈ ℤ)
Proof
Definitions occuring in Statement : 
str-to-nat: str-to-nat(s)
, 
nat-to-str: nat-to-str(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat-to-str: nat-to-str(n)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
str-to-nat: str-to-nat(s)
, 
str-to-nat-plus: str-to-nat-plus(s;n)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
str1-to-nat: str1-to-nat(a)
, 
eq_atom: x =a y
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
less_than: a < b
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
nat_plus: ℕ+
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
append: as @ bs
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
le_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
nequal-le-implies, 
decidable__lt, 
lelt_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
nat_wf, 
div_rem_sum, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
nequal_wf, 
rem_bounds_1, 
add-is-int-iff, 
multiply-is-int-iff, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
squash_wf, 
iff_weakening_equal, 
length_of_cons_lemma, 
length_of_nil_lemma, 
nat-to-str_wf, 
divide_wf, 
list_wf, 
remainder_wf, 
equal-wf-base-T, 
list_subtype_base, 
atom_subtype_base, 
list_induction, 
all_wf, 
str-to-nat-plus_wf, 
append_wf, 
str1-to-nat_wf, 
add_nat_wf, 
str-to-nat_wf, 
exp_wf2, 
length_wf_nat, 
length-append, 
str-to-nat-plus-property, 
add_functionality_wrt_eq, 
length_wf, 
add-associates, 
mul-distributes-right, 
mul-associates, 
mul-commutes, 
mul-swap, 
zero-mul, 
add-zero, 
zero-add, 
add-commutes, 
exp_add, 
exp1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
thin, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
because_Cache, 
productElimination, 
unionElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
addEquality, 
addLevel, 
baseClosed, 
imageMemberEquality, 
divideEquality, 
imageElimination, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
universeEquality, 
remainderEquality, 
productEquality, 
atomEquality, 
multiplyEquality, 
functionEquality, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}[n:\mBbbN{}].  (str-to-nat(nat-to-str(n))  =  n)
Date html generated:
2017_04_17-AM-09_18_20
Last ObjectModification:
2017_02_27-PM-05_23_10
Theory : decidable!equality
Home
Index