Nuprl Lemma : str-to-nat-plus-property

[s:Atom List]. ∀[n:ℕ].  (str-to-nat-plus(s;n) (str-to-nat(s) (n 10^||s||)) ∈ ℤ)


Proof




Definitions occuring in Statement :  str-to-nat: str-to-nat(s) str-to-nat-plus: str-to-nat-plus(s;n) exp: i^n length: ||as|| list: List nat: uall: [x:A]. B[x] multiply: m add: m natural_number: $n int: atom: Atom equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] implies:  Q str-to-nat: str-to-nat(s) str-to-nat-plus: str-to-nat-plus(s;n) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A prop: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) guard: {T} uiff: uiff(P;Q) true: True squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction uall_wf nat_wf equal_wf str-to-nat-plus_wf str-to-nat_wf exp_wf2 length_wf_nat list_wf list_ind_nil_lemma length_of_nil_lemma exp0_lemma nat_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf itermAdd_wf itermConstant_wf itermMultiply_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_wf list_ind_cons_lemma length_of_cons_lemma str1-to-nat_wf add_nat_wf multiply_nat_wf false_wf le_wf decidable__le add-is-int-iff intformand_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_le_lemma length_wf mul-swap add_functionality_wrt_eq non_neg_length exp_add iff_weakening_equal exp1 squash_wf true_wf mul-distributes-right mul-associates add-associates mul-commutes zero-mul zero-add add-swap add-commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination atomEquality sqequalRule lambdaEquality hypothesis intEquality hypothesisEquality applyEquality setElimination rename addEquality multiplyEquality natural_numberEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality because_Cache unionElimination independent_isectElimination dependent_pairFormation int_eqEquality computeAll lambdaFormation axiomEquality dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed productElimination imageElimination imageMemberEquality universeEquality

Latex:
\mforall{}[s:Atom  List].  \mforall{}[n:\mBbbN{}].    (str-to-nat-plus(s;n)  =  (str-to-nat(s)  +  (n  *  10\^{}||s||)))



Date html generated: 2017_04_17-AM-09_18_09
Last ObjectModification: 2017_02_27-PM-05_22_19

Theory : decidable!equality


Home Index