Nuprl Lemma : str-to-nat-plus-property
∀[s:Atom List]. ∀[n:ℕ].  (str-to-nat-plus(s;n) = (str-to-nat(s) + (n * 10^||s||)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
str-to-nat: str-to-nat(s)
, 
str-to-nat-plus: str-to-nat-plus(s;n)
, 
exp: i^n
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
atom: Atom
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
str-to-nat: str-to-nat(s)
, 
str-to-nat-plus: str-to-nat-plus(s;n)
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
uall_wf, 
nat_wf, 
equal_wf, 
str-to-nat-plus_wf, 
str-to-nat_wf, 
exp_wf2, 
length_wf_nat, 
list_wf, 
list_ind_nil_lemma, 
length_of_nil_lemma, 
exp0_lemma, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermMultiply_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
list_ind_cons_lemma, 
length_of_cons_lemma, 
str1-to-nat_wf, 
add_nat_wf, 
multiply_nat_wf, 
false_wf, 
le_wf, 
decidable__le, 
add-is-int-iff, 
intformand_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
length_wf, 
mul-swap, 
add_functionality_wrt_eq, 
non_neg_length, 
exp_add, 
iff_weakening_equal, 
exp1, 
squash_wf, 
true_wf, 
mul-distributes-right, 
mul-associates, 
add-associates, 
mul-commutes, 
zero-mul, 
zero-add, 
add-swap, 
add-commutes
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
atomEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
intEquality, 
hypothesisEquality, 
applyEquality, 
setElimination, 
rename, 
addEquality, 
multiplyEquality, 
natural_numberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
lambdaFormation, 
axiomEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
imageElimination, 
imageMemberEquality, 
universeEquality
Latex:
\mforall{}[s:Atom  List].  \mforall{}[n:\mBbbN{}].    (str-to-nat-plus(s;n)  =  (str-to-nat(s)  +  (n  *  10\^{}||s||)))
Date html generated:
2017_04_17-AM-09_18_09
Last ObjectModification:
2017_02_27-PM-05_22_19
Theory : decidable!equality
Home
Index