Nuprl Lemma : nat-to-str_wf

[n:ℕ]. (nat-to-str(n) ∈ Atom List)


Proof




Definitions occuring in Statement :  nat-to-str: nat-to-str(n) list: List nat: uall: [x:A]. B[x] member: t ∈ T atom: Atom
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) nat-to-str: nat-to-str(n) int_nzero: -o true: True nequal: a ≠ b ∈  sq_type: SQType(T) nat_plus: + less_than: a < b squash: T bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma le_wf decidable__lt div_rem_sum subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf rem_bounds_1 eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int cons_wf nil_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int nequal-le-implies append_wf add-is-int-iff multiply-is-int-iff itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma lelt_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache productElimination unionElimination applyEquality applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality addLevel instantiate cumulativity baseClosed imageMemberEquality equalityElimination atomEquality tokenEquality promote_hyp divideEquality imageElimination pointwiseFunctionality baseApply closedConclusion addEquality

Latex:
\mforall{}[n:\mBbbN{}].  (nat-to-str(n)  \mmember{}  Atom  List)



Date html generated: 2017_04_17-AM-09_17_41
Last ObjectModification: 2017_02_27-PM-05_22_00

Theory : decidable!equality


Home Index