Nuprl Lemma : union-list2-simplify1

[T:Type]. ∀[eq:EqDecider(T)]. ∀[ll:T List List]. ∀[L:T List].
  (union-list2(eq;[L; [L ll]]) union-list2(eq;[L ll]))


Proof




Definitions occuring in Statement :  union-list2: union-list2(eq;ll) cons: [a b] list: List deq: EqDecider(T) uall: [x:A]. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] union-list2: union-list2(eq;ll) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] ifthenelse: if then else fi  bfalse: ff uimplies: supposing a l_contains: A ⊆ B l_all: (∀x∈L.P[x]) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A prop: less_than: a < b squash: T iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B
Lemmas referenced :  select_member l_member_wf cons_member int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties select_wf member-union-list2 length_wf int_seg_wf cons_wf union-list2_wf l-union-subset null_cons_lemma list_ind_cons_lemma deq_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache universeEquality isect_memberFormation introduction sqequalAxiom sqequalRule isect_memberEquality dependent_functionElimination voidElimination voidEquality independent_isectElimination lambdaFormation natural_numberEquality cumulativity setElimination rename productElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation computeAll imageElimination independent_functionElimination inlFormation productEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ll:T  List  List].  \mforall{}[L:T  List].
    (union-list2(eq;[L;  [L  /  ll]])  \msim{}  union-list2(eq;[L  /  ll]))



Date html generated: 2016_05_14-PM-03_25_30
Last ObjectModification: 2016_01_14-PM-11_22_23

Theory : decidable!equality


Home Index