Nuprl Lemma : union-list2-simplify1
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[ll:T List List]. ∀[L:T List].
  (union-list2(eq;[L; [L / ll]]) ~ union-list2(eq;[L / ll]))
Proof
Definitions occuring in Statement : 
union-list2: union-list2(eq;ll)
, 
cons: [a / b]
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
union-list2: union-list2(eq;ll)
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
uimplies: b supposing a
, 
l_contains: A ⊆ B
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
Lemmas referenced : 
select_member, 
l_member_wf, 
cons_member, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
select_wf, 
member-union-list2, 
length_wf, 
int_seg_wf, 
cons_wf, 
union-list2_wf, 
l-union-subset, 
null_cons_lemma, 
list_ind_cons_lemma, 
deq_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
universeEquality, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
lambdaFormation, 
natural_numberEquality, 
cumulativity, 
setElimination, 
rename, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
independent_functionElimination, 
inlFormation, 
productEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ll:T  List  List].  \mforall{}[L:T  List].
    (union-list2(eq;[L;  [L  /  ll]])  \msim{}  union-list2(eq;[L  /  ll]))
Date html generated:
2016_05_14-PM-03_25_30
Last ObjectModification:
2016_01_14-PM-11_22_23
Theory : decidable!equality
Home
Index