Nuprl Lemma : l-union-subset

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:T List].  as ⋃ bs as supposing bs ⊆ as


Proof




Definitions occuring in Statement :  l-union: as ⋃ bs l_contains: A ⊆ B list: List deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  l-union: as ⋃ bs member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a prop: all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q subtype_rel: A ⊆B guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) iff: ⇐⇒ Q insert: insert(a;L) has-value: (a)↓ bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b rev_implies:  Q
Lemmas referenced :  l_contains_wf list_wf deq_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases reduce_nil_lemma nil_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int reduce_cons_lemma l_contains_cons eval_list_sq subtype_rel_list top_wf value-type-has-value list-value-type deq-member_wf bool_wf eqtt_to_assert assert-deq-member eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot l_member_wf cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis because_Cache universeEquality isect_memberFormation sqequalAxiom sqequalRule isect_memberEquality equalityTransitivity equalitySymmetry lambdaFormation setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination applyEquality unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination callbyvalueReduce equalityElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:T  List].    as  \mcup{}  bs  \msim{}  as  supposing  bs  \msubseteq{}  as



Date html generated: 2017_04_17-AM-09_09_53
Last ObjectModification: 2017_02_27-PM-05_18_01

Theory : decidable!equality


Home Index