Nuprl Lemma : assert-finite-fun-deq
∀[T:Type]. ∀[k:ℕ]. ∀[eq:EqDecider(T)]. ∀[f,g:ℕk ⟶ T].  uiff(↑(finite-fun-deq(k;eq) f g);f = g ∈ (ℕk ⟶ T))
Proof
Definitions occuring in Statement : 
finite-fun-deq: finite-fun-deq(k;eq), 
deq: EqDecider(T), 
int_seg: {i..j-}, 
nat: ℕ, 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
deq: EqDecider(T), 
nat: ℕ, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
iff_weakening_uiff, 
assert_wf, 
finite-fun-deq_wf, 
equal_wf, 
int_seg_wf, 
assert-deq, 
istype-assert, 
assert_witness, 
deq_wf, 
istype-nat, 
istype-universe
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation_alt, 
hypothesis, 
equalityIstype, 
inhabitedIsType, 
hypothesisEquality, 
because_Cache, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_isectElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
functionEquality, 
natural_numberEquality, 
independent_functionElimination, 
promote_hyp, 
functionIsType, 
universeIsType, 
instantiate, 
universeEquality, 
independent_pairEquality, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[T:Type].  \mforall{}[k:\mBbbN{}].  \mforall{}[eq:EqDecider(T)].  \mforall{}[f,g:\mBbbN{}k  {}\mrightarrow{}  T].    uiff(\muparrow{}(finite-fun-deq(k;eq)  f  g);f  =  g)
Date html generated:
2020_05_19-PM-09_36_36
Last ObjectModification:
2019_10_18-PM-00_01_10
Theory : equality!deciders
Home
Index