Nuprl Lemma : mk_deq-subtype
∀[T,S:Type].  ∀[p:∀x,y:S.  Dec(x = y ∈ S)]. (mk_deq(p) ∈ EqDecider(T)) supposing strong-subtype(T;S)
Proof
Definitions occuring in Statement : 
mk_deq: mk_deq(p), 
deq: EqDecider(T), 
strong-subtype: strong-subtype(A;B), 
decidable: Dec(P), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
implies: P ⇒ Q, 
guard: {T}, 
subtype_rel: A ⊆r B, 
deq: EqDecider(T), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
strong-subtype: strong-subtype(A;B), 
cand: A c∧ B, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
strong-subtype-implies, 
mk_deq_wf, 
subtype_rel_sets, 
bool_wf, 
all_wf, 
iff_wf, 
equal_wf, 
assert_wf, 
subtype_rel_set, 
subtype_rel_dep_function, 
subtype_rel_self, 
decidable_wf, 
strong-subtype_wf, 
equal_functionality_wrt_subtype_rel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
applyEquality, 
functionEquality, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
because_Cache, 
productElimination, 
lambdaFormation, 
independent_pairFormation, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination
Latex:
\mforall{}[T,S:Type].    \mforall{}[p:\mforall{}x,y:S.    Dec(x  =  y)].  (mk\_deq(p)  \mmember{}  EqDecider(T))  supposing  strong-subtype(T;S)
Date html generated:
2016_05_14-AM-06_06_34
Last ObjectModification:
2015_12_26-AM-11_46_51
Theory : equality!deciders
Home
Index