Nuprl Lemma : cardinality-le_functionality_wrt_equipollence

[A,B:Type]. ∀[k:ℕ].  (A  {|A| ≤ ⇐⇒ |B| ≤ k})


Proof




Definitions occuring in Statement :  equipollent: B cardinality-le: |T| ≤ n nat: uall: [x:A]. B[x] guard: {T} iff: ⇐⇒ Q implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q equipollent: B exists: x:A. B[x] guard: {T} iff: ⇐⇒ Q and: P ∧ Q cardinality-le: |T| ≤ n member: t ∈ T prop: rev_implies:  Q nat: biject: Bij(A;B;f) surject: Surj(A;B;f) all: x:A. B[x] compose: g squash: T true: True subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  cardinality-le_wf equipollent_wf nat_wf compose_wf int_seg_wf surject_wf equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal biject-inverse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin independent_pairFormation cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis universeEquality dependent_pairFormation natural_numberEquality setElimination rename because_Cache dependent_functionElimination sqequalRule applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed instantiate independent_isectElimination independent_functionElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[k:\mBbbN{}].    (A  \msim{}  B  {}\mRightarrow{}  \{|A|  \mleq{}  k  \mLeftarrow{}{}\mRightarrow{}  |B|  \mleq{}  k\})



Date html generated: 2018_05_21-PM-00_52_27
Last ObjectModification: 2018_05_19-AM-06_39_38

Theory : equipollence!!cardinality!


Home Index