Nuprl Lemma : cardinality-le_functionality_wrt_equipollence
∀[A,B:Type]. ∀[k:ℕ].  (A ~ B 
⇒ {|A| ≤ k 
⇐⇒ |B| ≤ k})
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
cardinality-le: |T| ≤ n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
cardinality-le: |T| ≤ n
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
biject: Bij(A;B;f)
, 
surject: Surj(A;B;f)
, 
all: ∀x:A. B[x]
, 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
cardinality-le_wf, 
equipollent_wf, 
nat_wf, 
compose_wf, 
int_seg_wf, 
surject_wf, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
biject-inverse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
dependent_pairFormation, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[k:\mBbbN{}].    (A  \msim{}  B  {}\mRightarrow{}  \{|A|  \mleq{}  k  \mLeftarrow{}{}\mRightarrow{}  |B|  \mleq{}  k\})
Date html generated:
2018_05_21-PM-00_52_27
Last ObjectModification:
2018_05_19-AM-06_39_38
Theory : equipollence!!cardinality!
Home
Index