Nuprl Lemma : count-quotient

k:ℕ
  ∀[A:Type]
    (A ~ ℕk
     (∀[E:A ⟶ A ⟶ ℙ]. (EquivRel(A;x,y.E[x;y])  (∀x,y:A.  Dec(E[x;y]))  (∃j:ℕ((j ≤ k) ∧ x,y:A//E[x;y] ~ ℕj)))))


Proof




Definitions occuring in Statement :  equipollent: B equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q uimplies: supposing a cand: c∧ B prop: nat: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  distinct-representatives equipollent-distinct-representatives length_wf_nat and_wf le_wf equipollent_wf quotient_wf int_seg_wf all_wf decidable_wf equiv_rel_wf nat_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isect_memberFormation isectElimination independent_functionElimination productElimination independent_isectElimination dependent_pairFormation independent_pairFormation setElimination rename sqequalRule lambdaEquality applyEquality natural_numberEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}k:\mBbbN{}
    \mforall{}[A:Type]
        (A  \msim{}  \mBbbN{}k
        {}\mRightarrow{}  (\mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}]
                    (EquivRel(A;x,y.E[x;y])
                    {}\mRightarrow{}  (\mforall{}x,y:A.    Dec(E[x;y]))
                    {}\mRightarrow{}  (\mexists{}j:\mBbbN{}.  ((j  \mleq{}  k)  \mwedge{}  x,y:A//E[x;y]  \msim{}  \mBbbN{}j)))))



Date html generated: 2016_05_14-PM-04_04_53
Last ObjectModification: 2015_12_26-PM-07_41_53

Theory : equipollence!!cardinality!


Home Index