Nuprl Lemma : distinct-representatives

k:ℕ
  ∀[A:Type]
    (A ~ ℕk
     (∀[E:A ⟶ A ⟶ ℙ]
          (EquivRel(A;x,y.E[x;y])
           (∀x,y:A.  Dec(E[x;y]))
           (∃L:A List. ((∀a,b∈L.  ¬E[a;b]) ∧ (∀a:A. (∃b∈L. E[a;b])) ∧ (||L|| ≤ k))))))


Proof




Definitions occuring in Statement :  equipollent: B pairwise: (∀x,y∈L.  P[x; y]) l_exists: (∃x∈L. P[x]) length: ||as|| list: List equiv_rel: EquivRel(T;x,y.E[x; y]) int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  ge: i ≥  equipollent: B it: nil: [] list_ind: list_ind length: ||as|| less_than': less_than'(a;b) le: A ≤ B so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] cand: c∧ B rev_implies:  Q true: True squash: T iff: ⇐⇒ Q nat: sq_type: SQType(T) guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B or: P ∨ Q decidable: Dec(P) prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] refl: Refl(T;x,y.E[x; y]) equiv_rel: EquivRel(T;x,y.E[x; y]) istype: istype(T) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) pairwise: (∀x,y∈L.  P[x; y]) less_than: a < b select: L[n] cons: [a b] uiff: uiff(P;Q) nat_plus: + l_exists: (∃x∈L. P[x])
Lemmas referenced :  istype-nat int_term_value_add_lemma itermAdd_wf primrec-wf2 le_wf l_member_wf l_exists_wf not_wf list_wf exists_wf all_wf subtype_rel_universe1 uall_wf guard_wf equiv_rel_wf decidable_wf equipollent-partition nat_properties equipollent_inversion length_wf pairwise_wf2 istype-false pairwise-nil nil_wf iff_weakening_equal istype-universe true_wf squash_wf equipollent_wf equipollent-zero subtype_rel_self istype-less_than istype-le decidable__lt decidable__le int_term_value_subtract_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermSubtract_wf intformeq_wf intformnot_wf int_subtype_base set_subtype_base subtype_base_sq subtract_wf decidable__equal_int int_seg_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma istype-void int_formula_prop_and_lemma istype-int intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat int_seg_properties subtype_rel_dep_function subtype_rel_list cons_wf length_of_cons_lemma select-cons-tl select_wf false_wf add-is-int-iff nat_plus_properties length_wf_nat add_nat_plus l_exists_cons
Rules used in proof :  addEquality Error :setIsType,  productEquality functionEquality closedConclusion Error :functionIsType,  baseClosed imageMemberEquality universeEquality Error :inhabitedIsType,  imageElimination intEquality cumulativity Error :isect_memberFormation_alt,  hypothesis_subsumption Error :productIsType,  Error :dependent_set_memberEquality_alt,  applyLambdaEquality equalitySymmetry equalityTransitivity because_Cache instantiate applyEquality unionElimination Error :universeIsType,  independent_pairFormation sqequalRule voidElimination Error :isect_memberEquality_alt,  dependent_functionElimination int_eqEquality Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  independent_functionElimination approximateComputation independent_isectElimination productElimination rename setElimination hypothesis hypothesisEquality natural_numberEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin cut Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution setEquality Error :equalityIstype,  baseApply promote_hyp pointwiseFunctionality Error :inrFormation_alt

Latex:
\mforall{}k:\mBbbN{}
    \mforall{}[A:Type]
        (A  \msim{}  \mBbbN{}k
        {}\mRightarrow{}  (\mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}]
                    (EquivRel(A;x,y.E[x;y])
                    {}\mRightarrow{}  (\mforall{}x,y:A.    Dec(E[x;y]))
                    {}\mRightarrow{}  (\mexists{}L:A  List.  ((\mforall{}a,b\mmember{}L.    \mneg{}E[a;b])  \mwedge{}  (\mforall{}a:A.  (\mexists{}b\mmember{}L.  E[a;b]))  \mwedge{}  (||L||  \mleq{}  k))))))



Date html generated: 2019_06_20-PM-02_17_59
Last ObjectModification: 2019_01_25-PM-02_44_36

Theory : equipollence!!cardinality!


Home Index