Nuprl Lemma : equipollent-distinct-representatives
∀[A:Type]. ∀[E:A ⟶ A ⟶ ℙ].
  (EquivRel(A;x,y.E[x;y]) 
⇒ (∀L:A List. (∀a:A. (∃b∈L. E[a;b])) 
⇒ x,y:A//E[x;y] ~ ℕ||L|| supposing (∀a,b∈L.  ¬E[a;b])))
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
pairwise: (∀x,y∈L.  P[x; y])
, 
l_exists: (∃x∈L. P[x])
, 
length: ||as||
, 
list: T List
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
pairwise: (∀x,y∈L.  P[x; y])
, 
not: ¬A
, 
false: False
, 
so_apply: x[s1;s2]
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
l_exists: (∃x∈L. P[x])
, 
ge: i ≥ j 
, 
nat: ℕ
, 
pi1: fst(t)
, 
le: A ≤ B
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
trans: Trans(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
equipollent: A ~ B
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
true: True
, 
refl: Refl(T;x,y.E[x; y])
Lemmas referenced : 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
all_wf, 
l_exists_wf, 
l_member_wf, 
pairwise_wf2, 
not_wf, 
list_wf, 
equiv_rel_wf, 
exists_wf, 
non_neg_length, 
length_wf_nat, 
nat_properties, 
equal_wf, 
lelt_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
iff_wf, 
squash_wf, 
le_wf, 
less_than_wf, 
and_wf, 
equal-wf-base, 
quotient_wf, 
biject_wf, 
quotient-member-eq, 
subtype_quotient, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
applyEquality, 
functionExtensionality, 
cumulativity, 
extract_by_obid, 
isectElimination, 
because_Cache, 
setElimination, 
rename, 
hypothesis, 
independent_isectElimination, 
natural_numberEquality, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
setEquality, 
instantiate, 
functionEquality, 
universeEquality, 
promote_hyp, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
independent_functionElimination, 
dependent_set_memberEquality, 
productEquality, 
hyp_replacement, 
imageMemberEquality, 
baseClosed, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
pointwiseFunctionality
Latex:
\mforall{}[A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    (EquivRel(A;x,y.E[x;y])
    {}\mRightarrow{}  (\mforall{}L:A  List.  (\mforall{}a:A.  (\mexists{}b\mmember{}L.  E[a;b]))  {}\mRightarrow{}  x,y:A//E[x;y]  \msim{}  \mBbbN{}||L||  supposing  (\mforall{}a,b\mmember{}L.    \mneg{}E[a;b])))
Date html generated:
2017_04_17-AM-09_33_01
Last ObjectModification:
2017_02_27-PM-05_33_19
Theory : equipollence!!cardinality!
Home
Index