Nuprl Lemma : equipollent-distinct-representatives

[A:Type]. ∀[E:A ⟶ A ⟶ ℙ].
  (EquivRel(A;x,y.E[x;y])  (∀L:A List. (∀a:A. (∃b∈L. E[a;b]))  x,y:A//E[x;y] ~ ℕ||L|| supposing (∀a,b∈L.  ¬E[a;b])))


Proof




Definitions occuring in Statement :  equipollent: B pairwise: (∀x,y∈L.  P[x; y]) l_exists: (∃x∈L. P[x]) length: ||as|| list: List equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] uimplies: supposing a member: t ∈ T pairwise: (∀x,y∈L.  P[x; y]) not: ¬A false: False so_apply: x[s1;s2] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: less_than: a < b squash: T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] l_exists: (∃x∈L. P[x]) ge: i ≥  nat: pi1: fst(t) le: A ≤ B equiv_rel: EquivRel(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q trans: Trans(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] equipollent: B biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) true: True refl: Refl(T;x,y.E[x; y])
Lemmas referenced :  select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf all_wf l_exists_wf l_member_wf pairwise_wf2 not_wf list_wf equiv_rel_wf exists_wf non_neg_length length_wf_nat nat_properties equal_wf lelt_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma iff_wf squash_wf le_wf less_than_wf and_wf equal-wf-base quotient_wf biject_wf quotient-member-eq subtype_quotient true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination applyEquality functionExtensionality cumulativity extract_by_obid isectElimination because_Cache setElimination rename hypothesis independent_isectElimination natural_numberEquality productElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll imageElimination setEquality instantiate functionEquality universeEquality promote_hyp equalityTransitivity equalitySymmetry applyLambdaEquality independent_functionElimination dependent_set_memberEquality productEquality hyp_replacement imageMemberEquality baseClosed pointwiseFunctionalityForEquality pertypeElimination pointwiseFunctionality

Latex:
\mforall{}[A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    (EquivRel(A;x,y.E[x;y])
    {}\mRightarrow{}  (\mforall{}L:A  List.  (\mforall{}a:A.  (\mexists{}b\mmember{}L.  E[a;b]))  {}\mRightarrow{}  x,y:A//E[x;y]  \msim{}  \mBbbN{}||L||  supposing  (\mforall{}a,b\mmember{}L.    \mneg{}E[a;b])))



Date html generated: 2017_04_17-AM-09_33_01
Last ObjectModification: 2017_02_27-PM-05_33_19

Theory : equipollence!!cardinality!


Home Index