Nuprl Lemma : equipollent-non-zero

[T:Type]. ∀n:ℕ+(T ~ ℕ T)


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] all: x:A. B[x] implies:  Q natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q equipollent: B exists: x:A. B[x] biject: Bij(A;B;f) and: P ∧ Q surject: Surj(A;B;f) member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  nat_plus_wf int_seg_wf equipollent_wf lelt_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_functionElimination dependent_set_memberEquality natural_numberEquality independent_pairFormation sqequalRule hypothesis cut lemma_by_obid isectElimination hypothesisEquality setElimination rename unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll universeEquality introduction

Latex:
\mforall{}[T:Type].  \mforall{}n:\mBbbN{}\msupplus{}.  (T  \msim{}  \mBbbN{}n  {}\mRightarrow{}  T)



Date html generated: 2016_05_14-PM-04_01_48
Last ObjectModification: 2016_01_14-PM-11_06_04

Theory : equipollence!!cardinality!


Home Index