Nuprl Lemma : equipollent-quotient2

[A:Type]
  ∀E:A ⟶ A ⟶ ℙ. ∀d:∀x,y:A.  Dec(↓E[x;y]).
    a:x,y:A//(↓E[x;y]) × {b:A| ↑isl(d b)}  supposing EquivRel(A;x,y.↓E[x;y])


Proof




Definitions occuring in Statement :  equipollent: B equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] assert: b isl: isl(x) decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] squash: T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  so_lambda: λ2y.t[x; y] not: ¬A false: False bfalse: ff true: True rev_implies:  Q iff: ⇐⇒ Q btrue: tt ifthenelse: if then else fi  assert: b isl: isl(x) or: P ∨ Q decidable: Dec(P) so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B trans: Trans(T;x,y.E[x; y]) prop: so_apply: x[s1;s2] implies:  Q sym: Sym(T;x,y.E[x; y]) squash: T refl: Refl(T;x,y.E[x; y]) and: P ∧ Q equiv_rel: EquivRel(T;x,y.E[x; y]) member: t ∈ T uimplies: supposing a all: x:A. B[x] uall: [x:A]. B[x] quotient: x,y:A//B[x; y] ext-eq: A ≡ B guard: {T} equiv-class: equiv-class(A;a,b.E[a; b];t)
Lemmas referenced :  equiv_rel_wf equipollent-quotient assert_witness assert_wf false_wf true_wf equal_wf not_wf isl_wf decidable_wf all_wf squash_wf equiv_rel_functionality_wrt_iff quotient_wf equal-wf-base quotient-member-eq subtype_rel_weakening equiv-class_wf equipollent_functionality_wrt_equipollent equipollent_weakening_ext-eq ext-eq_weakening ext-eq_inversion product_functionality_wrt_equipollent_dependent ext-eq-implies-biject
Rules used in proof :  universeEquality functionEquality independent_isectElimination because_Cache voidElimination natural_numberEquality independent_pairFormation unionElimination independent_functionElimination equalitySymmetry equalityTransitivity rename cumulativity functionExtensionality applyEquality isectElimination extract_by_obid baseClosed imageMemberEquality hypothesis imageElimination hypothesisEquality dependent_functionElimination lambdaEquality independent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productEquality pertypeElimination pointwiseFunctionalityForEquality

Latex:
\mforall{}[A:Type]
    \mforall{}E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}.  \mforall{}d:\mforall{}x,y:A.    Dec(\mdownarrow{}E[x;y]).
        A  \msim{}  a:x,y:A//(\mdownarrow{}E[x;y])  \mtimes{}  \{b:A|  \muparrow{}isl(d  a  b)\}    supposing  EquivRel(A;x,y.\mdownarrow{}E[x;y])



Date html generated: 2018_05_21-PM-00_52_53
Last ObjectModification: 2018_01_05-AM-10_24_53

Theory : equipollence!!cardinality!


Home Index