Nuprl Lemma : equipollent-subtype

[T,A:Type].
  (∀[a,b:ℕ].  (a ≤ b) supposing (T ~ ℕand ~ ℕa)) supposing 
     ((∀a1,a2:A.  ((a1 a2 ∈ T)  (a1 a2 ∈ A))) and 
     (A ⊆T))


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False nat: prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] equipollent: B exists: x:A. B[x] all: x:A. B[x] inject: Inj(A;B;f) compose: g guard: {T} biject: Bij(A;B;f)
Lemmas referenced :  less_than'_wf equipollent_wf int_seg_wf nat_wf all_wf equal_wf subtype_rel_wf equipollent_inversion compose_wf subtype_rel_dep_function subtype_rel_self inject_wf pigeon-hole
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache lemma_by_obid isectElimination setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality isect_memberEquality functionEquality applyEquality universeEquality voidElimination independent_functionElimination dependent_pairFormation independent_isectElimination lambdaFormation

Latex:
\mforall{}[T,A:Type].
    (\mforall{}[a,b:\mBbbN{}].    (a  \mleq{}  b)  supposing  (T  \msim{}  \mBbbN{}b  and  A  \msim{}  \mBbbN{}a))  supposing 
          ((\mforall{}a1,a2:A.    ((a1  =  a2)  {}\mRightarrow{}  (a1  =  a2)))  and 
          (A  \msubseteq{}r  T))



Date html generated: 2016_05_14-PM-04_03_55
Last ObjectModification: 2015_12_26-PM-07_42_10

Theory : equipollence!!cardinality!


Home Index