Nuprl Lemma : pigeon-hole

[n,m:ℕ]. ∀[f:ℕn ⟶ ℕm].  n ≤ supposing Inj(ℕn;ℕm;f)


Proof




Definitions occuring in Statement :  inject: Inj(A;B;f) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q le: A ≤ B not: ¬A implies:  Q false: False nat: prop: gt: i > j ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k guard: {T} cand: c∧ B less_than: a < b squash: T true: True inject: Inj(A;B;f) subtype_rel: A ⊆B
Lemmas referenced :  finite-partition less_than'_wf inject_wf int_seg_wf nat_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf itermMultiply_wf itermConstant_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_wf sum_bound false_wf le_wf length_wf int_seg_properties decidable__lt lelt_wf intformless_wf int_formula_prop_less_lemma le_weakening2 select_wf non_neg_length length_wf_nat decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination sqequalRule independent_pairEquality lambdaEquality because_Cache isectElimination setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality isect_memberEquality functionEquality voidElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality voidEquality independent_pairFormation dependent_set_memberEquality lambdaFormation applyEquality functionExtensionality imageMemberEquality baseClosed applyLambdaEquality

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m].    n  \mleq{}  m  supposing  Inj(\mBbbN{}n;\mBbbN{}m;f)



Date html generated: 2018_05_21-PM-00_38_32
Last ObjectModification: 2018_05_19-AM-06_45_50

Theory : list_1


Home Index