Nuprl Lemma : finite-injective-quotient
∀T,S:Type. ∀f:T ⟶ S.  (finite(S) 
⇒ (∀s:S. Dec(∃t:T. (f[t] = s ∈ S))) 
⇒ finite(T//t.f[t]))
Proof
Definitions occuring in Statement : 
finite: finite(T)
, 
injective-quotient: T//x.f[x]
, 
decidable: Dec(P)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
injective-quotient: T//x.f[x]
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
equipollent: A ~ B
, 
guard: {T}
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
decidable_wf, 
equal_wf, 
finite_wf, 
istype-universe, 
injective-quotient_wf, 
biject_wf, 
quotient-member-eq, 
sq_stable_from_decidable, 
subtype_quotient, 
finite_functionality_wrt_equipollent, 
exists_wf, 
finite-decidable-subset, 
decidable__squash
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
sqequalRule, 
Error :functionIsType, 
Error :universeIsType, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
applyEquality, 
hypothesis, 
Error :inhabitedIsType, 
instantiate, 
universeEquality, 
functionExtensionality, 
pointwiseFunctionalityForEquality, 
setEquality, 
pertypeElimination, 
promote_hyp, 
productElimination, 
Error :dependent_set_memberEquality_alt, 
Error :dependent_pairFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
Error :equalityIstype, 
independent_functionElimination, 
Error :productIsType, 
because_Cache, 
sqequalBase, 
Error :lambdaEquality_alt, 
independent_pairFormation, 
Error :setIsType, 
independent_isectElimination, 
dependent_functionElimination, 
Error :equalityIsType4, 
Error :equalityIsType1, 
applyLambdaEquality, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
cumulativity
Latex:
\mforall{}T,S:Type.  \mforall{}f:T  {}\mrightarrow{}  S.    (finite(S)  {}\mRightarrow{}  (\mforall{}s:S.  Dec(\mexists{}t:T.  (f[t]  =  s)))  {}\mRightarrow{}  finite(T//t.f[t]))
Date html generated:
2019_06_20-PM-02_19_14
Last ObjectModification:
2018_12_16-PM-00_26_12
Theory : equipollence!!cardinality!
Home
Index