Nuprl Lemma : finite-injective-quotient

T,S:Type. ∀f:T ⟶ S.  (finite(S)  (∀s:S. Dec(∃t:T. (f[t] s ∈ S)))  finite(T//t.f[t]))


Proof




Definitions occuring in Statement :  finite: finite(T) injective-quotient: T//x.f[x] decidable: Dec(P) so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: exists: x:A. B[x] so_apply: x[s] injective-quotient: T//x.f[x] quotient: x,y:A//B[x; y] and: P ∧ Q so_lambda: λ2x.t[x] equipollent: B guard: {T} biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) squash: T sq_stable: SqStable(P) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  decidable_wf equal_wf finite_wf istype-universe injective-quotient_wf biject_wf quotient-member-eq sq_stable_from_decidable subtype_quotient finite_functionality_wrt_equipollent exists_wf finite-decidable-subset decidable__squash
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut sqequalRule Error :functionIsType,  Error :universeIsType,  hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin productEquality applyEquality hypothesis Error :inhabitedIsType,  instantiate universeEquality functionExtensionality pointwiseFunctionalityForEquality setEquality pertypeElimination promote_hyp productElimination Error :dependent_set_memberEquality_alt,  Error :dependent_pairFormation_alt,  equalityTransitivity equalitySymmetry Error :equalityIstype,  independent_functionElimination Error :productIsType,  because_Cache sqequalBase Error :lambdaEquality_alt,  independent_pairFormation Error :setIsType,  independent_isectElimination dependent_functionElimination Error :equalityIsType4,  Error :equalityIsType1,  applyLambdaEquality setElimination rename imageMemberEquality baseClosed imageElimination cumulativity

Latex:
\mforall{}T,S:Type.  \mforall{}f:T  {}\mrightarrow{}  S.    (finite(S)  {}\mRightarrow{}  (\mforall{}s:S.  Dec(\mexists{}t:T.  (f[t]  =  s)))  {}\mRightarrow{}  finite(T//t.f[t]))



Date html generated: 2019_06_20-PM-02_19_14
Last ObjectModification: 2018_12_16-PM-00_26_12

Theory : equipollence!!cardinality!


Home Index