Nuprl Lemma : finite_functionality_wrt_ext-eq

[A,B:Type].  (A ≡  (finite(A) ⇐⇒ finite(B)))


Proof




Definitions occuring in Statement :  finite: finite(T) ext-eq: A ≡ B uall: [x:A]. B[x] iff: ⇐⇒ Q implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q finite: finite(T) exists: x:A. B[x] member: t ∈ T nat: prop: rev_implies:  Q guard: {T} uimplies: supposing a
Lemmas referenced :  equipollent_wf int_seg_wf finite_wf ext-eq_wf ext-eq_inversion equipollent_transitivity equipollent_weakening_ext-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality cut introduction extract_by_obid isectElimination natural_numberEquality setElimination rename hypothesis universeEquality independent_isectElimination independent_functionElimination

Latex:
\mforall{}[A,B:Type].    (A  \mequiv{}  B  {}\mRightarrow{}  (finite(A)  \mLeftarrow{}{}\mRightarrow{}  finite(B)))



Date html generated: 2019_06_20-PM-02_18_56
Last ObjectModification: 2018_09_24-PM-01_01_08

Theory : equipollence!!cardinality!


Home Index