Step
*
1
1
1
of Lemma
function_functionality_wrt_equipollent
1. A : Type
2. B : A ⟶ Type
3. C : A ⟶ Type
4. ∀a:A. ∃f:B[a] ⟶ C[a]. Bij(B[a];C[a];f)
5. F : a:A ⟶ B[a] ⟶ C[a]
6. ∀a:A. Bij(B[a];C[a];F a)
7. a1 : a:A ⟶ B[a]
8. a2 : a:A ⟶ B[a]
9. (λa.(F a (a1 a))) = (λa.(F a (a2 a))) ∈ (a:A ⟶ C[a])
10. a : A
⊢ (a1 a) = (a2 a) ∈ B[a]
BY
{ ((ApFunToHypEquands `Z' ⌜Z a⌝ ⌜C[a]⌝ (-2)⋅ THENA Auto) THEN Reduce -1) }
1
1. A : Type
2. B : A ⟶ Type
3. C : A ⟶ Type
4. ∀a:A. ∃f:B[a] ⟶ C[a]. Bij(B[a];C[a];f)
5. F : a:A ⟶ B[a] ⟶ C[a]
6. ∀a:A. Bij(B[a];C[a];F a)
7. a1 : a:A ⟶ B[a]
8. a2 : a:A ⟶ B[a]
9. (λa.(F a (a1 a))) = (λa.(F a (a2 a))) ∈ (a:A ⟶ C[a])
10. a : A
11. (F a (a1 a)) = (F a (a2 a)) ∈ C[a]
⊢ (a1 a) = (a2 a) ∈ B[a]
Latex:
Latex:
1. A : Type
2. B : A {}\mrightarrow{} Type
3. C : A {}\mrightarrow{} Type
4. \mforall{}a:A. \mexists{}f:B[a] {}\mrightarrow{} C[a]. Bij(B[a];C[a];f)
5. F : a:A {}\mrightarrow{} B[a] {}\mrightarrow{} C[a]
6. \mforall{}a:A. Bij(B[a];C[a];F a)
7. a1 : a:A {}\mrightarrow{} B[a]
8. a2 : a:A {}\mrightarrow{} B[a]
9. (\mlambda{}a.(F a (a1 a))) = (\mlambda{}a.(F a (a2 a)))
10. a : A
\mvdash{} (a1 a) = (a2 a)
By
Latex:
((ApFunToHypEquands `Z' \mkleeneopen{}Z a\mkleeneclose{} \mkleeneopen{}C[a]\mkleeneclose{} (-2)\mcdot{} THENA Auto) THEN Reduce -1)
Home
Index