Nuprl Lemma : n-to-bool-list

n:ℕ. ∃L:(ℕn ⟶ 𝔹List. (no_repeats(ℕn ⟶ 𝔹;L) ∧ (∀f:ℕn ⟶ 𝔹(f ∈ L)))


Proof




Definitions occuring in Statement :  no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List int_seg: {i..j-} nat: bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  finite-iff-listable int_seg_wf bool_wf finite-function nsub_finite finite-bool istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality natural_numberEquality setElimination rename hypothesisEquality hypothesis productElimination independent_pairFormation independent_functionElimination dependent_functionElimination because_Cache sqequalRule lambdaEquality_alt universeIsType

Latex:
\mforall{}n:\mBbbN{}.  \mexists{}L:(\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  List.  (no\_repeats(\mBbbN{}n  {}\mrightarrow{}  \mBbbB{};L)  \mwedge{}  (\mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.  (f  \mmember{}  L)))



Date html generated: 2019_10_15-AM-10_25_11
Last ObjectModification: 2019_09_27-PM-02_11_08

Theory : equipollence!!cardinality!


Home Index