Nuprl Lemma : n-to-bool-list
∀n:ℕ. ∃L:(ℕn ⟶ 𝔹) List. (no_repeats(ℕn ⟶ 𝔹;L) ∧ (∀f:ℕn ⟶ 𝔹. (f ∈ L)))
Proof
Definitions occuring in Statement : 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
finite-iff-listable, 
int_seg_wf, 
bool_wf, 
finite-function, 
nsub_finite, 
finite-bool, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality_alt, 
universeIsType
Latex:
\mforall{}n:\mBbbN{}.  \mexists{}L:(\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  List.  (no\_repeats(\mBbbN{}n  {}\mrightarrow{}  \mBbbB{};L)  \mwedge{}  (\mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.  (f  \mmember{}  L)))
Date html generated:
2019_10_15-AM-10_25_11
Last ObjectModification:
2019_09_27-PM-02_11_08
Theory : equipollence!!cardinality!
Home
Index