Nuprl Lemma : quotient-equipollent

[A,B:Type].
  (finite-type(A)
   (∀x,y:B.  Dec(x y ∈ B))
   (∀E:A ⟶ A ⟶ ℙx,y:A//E[x;y] ⇐⇒ mod (a1,a2.E[a1;a2]) supposing EquivRel(A;x,y.E[x;y])))


Proof




Definitions occuring in Statement :  equiv-equipollent: mod (a1,a2.E[a1; a2]) equipollent: B finite-type: finite-type(T) equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} or: P ∨ Q subtype_rel: A ⊆B
Lemmas referenced :  equiv-equipollent-iff-quotient-equipollent equipollent_wf quotient_wf equiv-equipollent_wf equiv_rel_wf all_wf decidable_wf equal_wf finite-type_wf sq_stable-finite-type-onto exists_wf subtype_quotient
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination independent_isectElimination independent_functionElimination productElimination independent_pairFormation sqequalRule lambdaEquality applyEquality functionEquality cumulativity universeEquality inrFormation

Latex:
\mforall{}[A,B:Type].
    (finite-type(A)
    {}\mRightarrow{}  (\mforall{}x,y:B.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}
                x,y:A//E[x;y]  \msim{}  B  \mLeftarrow{}{}\mRightarrow{}  A  \msim{}  B  mod  (a1,a2.E[a1;a2])  supposing  EquivRel(A;x,y.E[x;y])))



Date html generated: 2018_05_21-PM-00_53_10
Last ObjectModification: 2018_05_19-AM-06_40_05

Theory : equipollence!!cardinality!


Home Index