Nuprl Lemma : almost_full_wf
∀[T:Type]. ∀[n:ℕ]. ∀[R:n-aryRel(T)].  (almost_full(T;n;R) ∈ ℙ)
Proof
Definitions occuring in Statement : 
almost_full: almost_full(T;n;R)
, 
nary-rel: n-aryRel(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
almost_full: almost_full(T;n;R)
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nary-rel: n-aryRel(T)
Lemmas referenced : 
all_wf, 
nat_wf, 
exists_wf, 
int_seg_wf, 
strictly-increasing-seq_wf, 
subtype_rel_dep_function, 
compose_wf, 
nary-rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
productEquality, 
applyEquality, 
intEquality, 
independent_isectElimination, 
lambdaFormation, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[R:n-aryRel(T)].    (almost\_full(T;n;R)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-04_08_11
Last ObjectModification:
2015_12_26-PM-07_54_57
Theory : fan-theorem
Home
Index