Nuprl Lemma : almost_full_wf

[T:Type]. ∀[n:ℕ]. ∀[R:n-aryRel(T)].  (almost_full(T;n;R) ∈ ℙ)


Proof




Definitions occuring in Statement :  almost_full: almost_full(T;n;R) nary-rel: n-aryRel(T) nat: uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T almost_full: almost_full(T;n;R) so_lambda: λ2x.t[x] nat: prop: and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a all: x:A. B[x] nary-rel: n-aryRel(T)
Lemmas referenced :  all_wf nat_wf exists_wf int_seg_wf strictly-increasing-seq_wf subtype_rel_dep_function compose_wf nary-rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis cumulativity hypothesisEquality lambdaEquality natural_numberEquality setElimination rename because_Cache productEquality applyEquality intEquality independent_isectElimination lambdaFormation universeEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[R:n-aryRel(T)].    (almost\_full(T;n;R)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-04_08_11
Last ObjectModification: 2015_12_26-PM-07_54_57

Theory : fan-theorem


Home Index