Nuprl Lemma : decidable__f-proper-subset
∀[T:Type]. ∀eq:EqDecider(T). ∀xs,ys:fset(T). Dec(xs ⊆≠ ys)
Proof
Definitions occuring in Statement :
f-proper-subset: xs ⊆≠ ys
,
fset: fset(T)
,
deq: EqDecider(T)
,
decidable: Dec(P)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
fset_wf,
deq_wf,
f-proper-subset_wf,
assert_wf,
f-proper-subset-dec_wf,
decidable__assert,
decidable_functionality,
iff_weakening_uiff,
assert-f-proper-subset-dec
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
universeEquality,
dependent_functionElimination,
independent_functionElimination,
productElimination,
independent_pairFormation
Latex:
\mforall{}[T:Type]. \mforall{}eq:EqDecider(T). \mforall{}xs,ys:fset(T). Dec(xs \msubseteq{}\mneq{} ys)
Date html generated:
2016_05_14-PM-03_42_01
Last ObjectModification:
2015_12_26-PM-06_40_00
Theory : finite!sets
Home
Index